
1

Lecture 20: OOO, Memory Hierarchy

• Today’s topics:

 Branch prediction wrap-up
 Out-of-order execution
 Cache basics

2

Bimodal Predictor

Branch PC

14 bits
Table of

16K entries
of 2-bit

saturating
counters

Indexing functions
Multiple branch predictors
History, trade-offs

3

2-Bit Prediction

• For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)
… sound familiar?

• If (counter >= 2), predict taken, else predict not taken

• The counter attempts to capture the common case for
each branch

4

Slowdowns from Stalls

• Perfect pipelining with no hazards an instruction
completes every cycle (total cycles ~ num instructions)
 speedup = increase in clock speed = num pipeline stages

• With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
instruction completes

• Total cycles = number of instructions + stall cycles

5

Multicycle Instructions

• Multiple parallel pipelines – each pipeline can have a different
number of stages

• Instructions can now complete out of order – must make sure
that writes to a register happen in the correct order

6

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1 R1+R2
R2 R1+R3

BEQZ R2
R3 R1+R2
R1 R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1 R1+R2
T2 T1+R3

BEQZ T2
T4 T1+T2
T5 T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags
broadcast to IQ

7

Example Code

Completion times with in-order with ooo

ADD R1, R2, R3 5 5
ADD R4, R1, R2 6 6
LW R5, 8(R4) 7 7
ADD R7, R6, R5 9 9
ADD R8, R7, R5 10 10
LW R9, 16(R4) 11 7
ADD R10, R6, R9 13 9
ADD R11, R10, R9 14 10

8

Cache Hierarchies

• Data and instructions are stored on DRAM chips – DRAM
is a technology that has high bit density, but relatively poor
latency – an access to data in memory can take as many
as 300 cycles today!

• Hence, some data is stored on the processor in a structure
called the cache – caches employ SRAM technology, which
is faster, but has lower bit density

• Internet browsers also cache web pages – same concept

9

Memory Hierarchy

• As you go further, capacity and latency increase

Registers
1KB

1 cycle

L1 data or
instruction

Cache
32KB

2 cycles

L2 cache
2MB

15 cycles

Memory
1GB

300 cycles
Disk

80 GB
10M cycles

10

Locality

• Why do caches work?
 Temporal locality: if you used some data recently, you

will likely use it again
 Spatial locality: if you used some data recently, you

will likely access its neighbors

• No hierarchy: average access time for data = 300 cycles

• 32KB 1-cycle L1 cache that has a hit rate of 95%:
average access time = 0.95 x 1 + 0.05 x (301)

= 16 cycles

11

Accessing the Cache

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique location in cache

8 words: 3 index bits

Byte address

Data array
Sets

Offset

12

The Tag Array

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array

13

Example Access Pattern

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array

Assume that addresses are 8 bits long
How many of the following address requests
are hits/misses?
4, 7, 10, 13, 16, 68, 73, 78, 83, 88, 4, 7, 10…

14

Increasing Line Size

32-byte cache
line size or
block size

10100000

Byte address

Tag

Data arrayTag array

Offset

A large cache line size smaller tag array,
fewer misses because of spatial locality

15

Associativity

10100000

Byte address

Tag

Data arrayTag array

Set associativity fewer conflicts; wasted power
because multiple data and tags are read

Way-1 Way-2

Compare

16

Associativity

10100000

Byte address

Tag

Data arrayTag array

How many offset/index/tag bits if the cache has
64 sets,

each set has 64 bytes,
4 ways

Way-1 Way-2

Compare

17

Example

• 32 KB 4-way set-associative data cache array with 32
byte line sizes

• How many sets?

• How many index bits, offset bits, tag bits?

• How large is the tag array?

18

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

