Lecture 18: Pipelining

e Today’s topics:

= Hazards and instruction scheduling
= Branch prediction
= Qut-of-order execution

Example 2 — Bypassing

« Show the instruction occupying each stage in each cycle (with bypassing)
If I1is R1+R2->R3 and 12is R3+R4->R5 and I3 is R3+R8—>R09.
|dentify the input latch for each input operand.

CYC-1 CYC-2 CYC-3 CYC-4 CYC-5 CYC-6

@)
<
Q

Example 2 — Bypassing

« Show the instruction occupying each stage in each cycle (with bypassing)
If I1is R1+R2->R3 and 12is R3+R4->R5 and I3 is R3+R8—>R09.
|dentify the input latch for each input operand.

CYC-1 CYC-2 CYC-3 CYC-4 CYC-5 CYC-6

@)
<
Q

Problem 1

SEEra | | ||
oosece [

Problem 2

U [

lw $1, 8(%$2)

Problem 3

o snos [

lw $1, 8(%$2)

Problem 4

A 7 or 9 stage pipeline

lw $1, 8(%$2)

add $4, 91, $3

Problem 4

Without bypassing: 4 stalls
IF:IF:DE:DE:RR:AL:DM:DM:RW
IF: IF :DE:DE:DE:DE:DE :DE:RR:AL:RW

With bypassing: 2 stalls
IF:IF:DE:DE:RR:AL:DM:DM:RW
IF: IF :DE:DE:DE:DE:RR :AL:RW

$1, 8(%$2)

lw
SO Y L e
]

Control Hazards

« Simple techniques to handle control hazard stalls:

» for every branch, introduce a stall cycle (note: every
6" instruction is a branch!)

» assume the branch is not taken and start fetching the
next instruction — if the branch is taken, need hardware
to cancel the effect of the wrong-path instruction

» fetch the next instruction (branch delay slot) and
execute it anyway — if the instruction turns out to be
on the correct path, useful work was done — if the
Instruction turns out to be on the wrong path,
hopefully program state is not lost

» make a smarter guess and fetch instructions from the

expected target :

Branch Delay Slots

a. From before

add $s1, $s2, $s3

if $s2 = 0 then ——

Delay slot

A

Becomes

if $s2 = 0 then ——

add $s1, $s2, $s3

I

b. From target

sub $t4, $t5, $t6 =—

add $s1, $s2, $s3

if $s1 = 0 then —

Delay slot

Becomes

add $s1, $s2, $s3

if $s1 = 0 then —

sub $t4, $t5, $t6

10
Source: H&P textbook

Pipeline without Branch Predictor

11

Pipeline with Branch Predictor

Branch
Predictor

12

2-Bit Prediction

e For each branch, maintain a 2-bit saturating counter:
If the branch is taken: counter = min(3,counter+1)
If the branch is not taken: counter = max(0,counter-1)
... sound familiar?

e If (counter >= 2), predict taken, else predict not taken

e The counter attempts to capture the common case for
each branch

13

Bimodal Predictor

14 bits

14

Slowdowns from Stalls

 Perfect pipelining with no hazards - an instruction
completes every cycle (total cycles ~ num instructions)
-> speedup = increase In clock speed = num pipeline stages

* With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
Instruction completes

e Total cycles = number of instructions + stall cycles

15

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

