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Lecture 8: Addition, Multiplication & Division

• Today’s topics: 

 Signed/Unsigned
 Addition
 Multiplication
 Division
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2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)   
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Why is this representation favorable?
Consider the sum of  1 and -2  …. we get  -1
Consider the sum of  2 and -1  …. we get +1

This format can directly undergo addition without any conversions!

Each number represents the quantity
x31 -231 +  x30 230 + x29 229 + … + x1 21 + x0 20
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2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)   
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Note that the sum of a number x and its inverted representation x’ always
equals  a string of 1s (-1).

x + x’ = -1
x’ + 1 = -x        … hence, can compute the negative of a number by
-x = x’ + 1             inverting all bits and adding 1

Similarly, the sum of  x and –x gives us all zeroes, with a carry of 1
In reality, x + (-x) = 2n … hence the name 2’s complement
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Example

• Compute the 32-bit 2’s complement representations
for the following decimal numbers:

5,  -5, -6 
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Example

• Compute the 32-bit 2’s complement representations
for the following decimal numbers:

5,  -5, -6 

5:   0000 0000 0000 0000 0000 0000 0000 0101
-5:   1111  1111  1111  1111  1111  1111  1111 1011
-6:   1111  1111  1111  1111  1111  1111  1111 1010

Given -5, verify that negating and adding 1 yields the
number 5
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Signed / Unsigned

• The hardware recognizes two formats:

unsigned (corresponding to the C declaration  unsigned int)
-- all numbers are positive, a 1 in the most significant bit

just means it is a really large number

signed (C declaration is  signed int or just  int)
-- numbers can be +/- , a 1 in the MSB means the number

is negative

This distinction enables us to represent twice as many
numbers when we’re sure that we don’t need negatives
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MIPS Instructions

Consider a comparison instruction:
slt   $t0, $t1, $zero

and $t1 contains the 32-bit number   1111 01…01

What gets stored in $t0?
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MIPS Instructions

Consider a comparison instruction:
slt   $t0, $t1, $zero

and $t1 contains the 32-bit number   1111 01…01

What gets stored in $t0?
The result depends on whether $t1 is a signed or unsigned
number – the compiler/programmer must track this and
accordingly use either slt or  sltu

slt    $t0, $t1, $zero     stores  1 in $t0
sltu  $t0, $t1, $zero     stores  0 in $t0
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Sign Extension

• Occasionally, 16-bit signed numbers must be converted
into 32-bit signed numbers – for example, when doing an
add with an immediate operand

• The conversion is simple: take the most significant bit and
use it to fill up the additional bits on the left – known as
sign extension

So 210 goes from  0000 0000 0000 0010   to
0000 0000 0000 0000 0000 0000 0000 0010

and -210 goes from 1111 1111 1111 1110   to
1111 1111 1111 1111 1111 1111 1111 1110
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Alternative Representations

• The following two (intuitive) representations were discarded
because they required additional conversion steps before
arithmetic could be performed on the numbers

 sign-and-magnitude: the most significant bit represents
+/- and the remaining bits express the magnitude

 one’s complement: -x is represented by inverting all
the bits of x

Both representations above suffer from two zeroes
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Addition and Subtraction

• Addition is similar to decimal arithmetic

• For subtraction, simply add the negative number – hence,
subtract A-B involves negating B’s bits, adding 1 and A

Source: H&P textbook
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Overflows

• For an unsigned number, overflow happens when the last carry (1)
cannot be accommodated

• For a signed number, overflow happens when the most significant bit
is not the same as every bit to its left
 when the sum of two positive numbers is a negative result
 when the sum of two negative numbers is a positive result
 The sum of a positive and negative number will never overflow

• MIPS allows addu and subu instructions that work with unsigned
integers and never flag an overflow – to detect the overflow, other
instructions will have to be executed
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Multiplication Example

Multiplicand 1000ten
Multiplier x    1001ten

---------------
1000

0000
0000

1000
----------------

Product 1001000ten

In every step
• multiplicand is shifted
• next bit of multiplier is examined (also a shifting step)
• if this bit is 1, shifted multiplicand is added to the product
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HW Algorithm 1

In every step
• multiplicand is shifted
• next bit of multiplier is examined (also a shifting step)
• if this bit is 1, shifted multiplicand is added to the product

Source: H&P textbook
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HW Algorithm 2

• 32-bit ALU and multiplicand is untouched
• the sum keeps shifting right
• at every step, number of bits in product + multiplier = 64,

hence, they share a single 64-bit register

Source: H&P textbook
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Notes

• The previous algorithm also works for signed numbers
(negative numbers in 2’s complement form)

• We can also convert negative numbers to positive, multiply
the magnitudes, and convert to negative if signs disagree

• The product of two 32-bit numbers can be a 64-bit number
-- hence, in MIPS, the product is saved in two 32-bit

registers
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MIPS Instructions

mult    $s2, $s3            computes the product and stores
it in two “internal” registers that
can be referred to as  hi and  lo

mfhi     $s0                   moves the value in  hi into $s0
mflo     $s1                   moves the value in  lo into $s1

Similarly for multu
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Fast Algorithm

• The previous algorithm
requires a clock to ensure that
the earlier addition has
completed before shifting

• This algorithm can quickly set
up most inputs – it then has to
wait for the result of each add
to propagate down – faster
because no clock is involved

-- Note: high transistor cost

Source: H&P textbook
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Division

1001ten Quotient
Divisor 1000ten |     1001010ten Dividend

-1000
10
101
1010
-1000

10ten Remainder

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient
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Division

1001ten Quotient
Divisor 1000ten |     1001010ten Dividend

0001001010        0001001010      0000001010    0000001010
100000000000  0001000000 00001000000000001000
Quo:   0                   000001               0000010           000001001

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient
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Divide Example

• Divide 7ten (0000 0111two)  by  2ten (0010two)

Iter Step Quot Divisor Remainder
0 Initial values
1

2

3

4

5
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Divide Example

• Divide 7ten (0000 0111two)  by  2ten (0010two)

Iter Step Quot Divisor Remainder
0 Initial values 0000 0010 0000 0000 0111
1 Rem = Rem – Div

Rem < 0  +Div, shift 0 into Q
Shift Div right

0000
0000
0000

0010 0000
0010 0000
0001 0000

1110 0111
0000 0111
0000 0111

2 Same steps as 1 0000
0000
0000

0001 0000
0001 0000
0000 1000

1111 0111
0000 0111
0000 0111

3 Same steps as 1 0000 0000 0100 0000 0111
4 Rem = Rem – Div 

Rem >= 0  shift 1 into Q
Shift Div right

0000
0001
0001

0000 0100
0000 0100
0000 0010

0000 0011
0000 0011
0000 0011

5 Same steps as 4 0011 0000 0001 0000 0001
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