Lecture 5: Procedure Calls

e Today’s topics:

= Memory layout, numbers, control instructions
= Procedure calls



Memory Organization

» The space allocated on stack by a procedure is termed the activation
record (includes saved values and data local to the procedure) — frame
pointer points to the start of the record and stack pointer points to the
end — variable addresses are specified relative to $fp as $sp may
change during the execution of the procedure

» $gp points to area in memory that saves global variables

* Dynamically allocated storage (with malloc()) is placed on the heap

Static data (globals)

Text (instructions)




Recap — Numeric Representations

 Decimal 35, = 3x10' +5x10°
* Binary 00100011, = 1x2°> + 1x2t + 1x2°

* Hexadecimal (compact representation)
Ox23 or 23,, = 2x16' + 3x16°

0-15 (decimal) -> 0-9, a-f (hex)

Dec Binary Hex | Dec Binary Hex | Dec Binary Hex | Dec Binary Hex
0O 0000 OO0 4 0100 04 8 1000 08 | 12 1100 Oc
1 0001 01 5 0101 05 9 1001 09 | 13 1101 Od

2 0010 02 6 0110 06 | 10 1010 Oa | 14 1110 Oe
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3 0011 O3 0111 Ov |11 1011 Ob | 15 1111 Of
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Instruction Formats

Instructions are represented as 32-bit numbers (one word),
broken into 6 fields

R-type instruction add  $tO, $s1, $s2

000000 10001 10010 01000 00000 100000

6 bits 5bits 5bits 5bhbits 5bhits 6 bits
op s rt rd shamt funct

opcode source source dest shiftamt function

I-type instruction lw  $t0, 32($s3)
6 bits 5 bits 5 bits 16 bits
opcode Is rt constant



Logical Operations

Logical ops C operators  Java operators MIPS instr
Shift Left << << sl
Shift Right >> >>> srl
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori

Bit-by-bit NOT ~ ~ nor



Control Instructions

e Conditional branch: Jump to instruction L1 if registerl
equals reqgister2:  beq registerl, register2, L1
Similarly, bne and slt (set-on-less-than)

« Unconditional branch:
j L1
jr $sO0 (useful for large case statements and big jumps)

Convert to assembly:

if (i==))
f = g+h;
else



Control Instructions

e Conditional branch: Jump to instruction L1 if registerl
equals reqgister2:  beq registerl, register2, L1
Similarly, bne and slt (set-on-less-than)

« Unconditional branch:
j L1
jr $sO0 (useful for large case statements and big jumps)

Convert to assembly:

if (i==j) bne $s3, $s4, Else
f = g+h; add $s0, $s1, $s2
else ] Exit
f = g-h; Else: sub $s0, $s1, $s2

Exit: !



Example

Convert to assembly:
while (save[i] == k)

| +=1;

I and k are in $s3 and $s5 and
base of array save[] is in $s6



Example

Convert to assembly:
while (save[i] == k)

| +=1;

I and k are in $s3 and $s5 and
base of array save[] is in $s6

Loop: sl $tl1, $s3, 2
add $t1, $t1, $s6
lw  $t0, O($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
| Loop

Exit:
sl $t1, $s3, 2
add $t1, $t1, $s6

Loop: Iw  $tO, O($t1)

Exit:

bne $t0, $s5, Exit
addi $s3, $s3, 1
addi $t1, $t1, 4

] Loop




Registers

* The 32 MIPS registers are partitioned as follows:

= Register 0 : $zero always stores the constant 0

= Regs 2-3 : $Vv0, $v1 return values of a procedure

= Regs 4-7 : $a0-%$a3 input arguments to a procedure
= Regs 8-15: $t0-$t7 temporaries

= Regs 16-23: $s0-$s7 variables

* Regs 24-25: $t8-$t9 more temporaries

" Reg
" Reg
" Reg
" Reg

28 1 3gp global pointer
29 1 %sp stack pointer
30 :$fp frame pointer
31 :%ra return address
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Procedures
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Procedures

« Each procedure (function, subroutine) maintains a scratchpad of
register values — when another procedure is called (the callee), the
new procedure takes over the scratchpad — values may have to be
saved so we can safely return to the caller

= parameters (arguments) are placed where the callee can see them
= control is transferred to the callee

= acquire storage resources for callee

= execute the procedure

= place result value where caller can access it

= return control to caller
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Jump-and-Link

* A special register (storage not part of the register file) maintains the
address of the instruction currently being executed — this is the
program counter (PC)

* The procedure call is executed by invoking the jump-and-link (jal)
instruction — the current PC (actually, PC+4) is saved in the register
$ra and we jump to the procedure’s address (the PC is accordingly
set to this address)

jal  NewProcedureAddress

* Since jal may over-write a relevant value in $ra, it must be saved
somewhere (in memory?) before invoking the jal instruction

 How do we return control back to the caller after completing the
callee procedure?
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The Stack

The register scratchpad for a procedure seems volatile —
It seems to disappear every time we switch procedures —
a procedure’s values are therefore backed up in memory
on a stack

High address

Proc A
call Proc B
é:.éll Proc C
reﬂj.rn

this way Low address return "

Stack grows l return



Saves and Restores
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Storage Management on a Call/Return

* A new procedure must create space for all its variables on the stack

» Before/after executing the jal, the caller/callee must save relevant
values in $s0-$s7, $a0-$a3, $ra, temps into the stack space

* Arguments are copied into $a0-%$a3; the jal is executed
* After the callee creates stack space, it updates the value of $sp

* Once the callee finishes, it copies the return value into $vO0, frees
up stack space, and $sp is incremented

* On return, the caller/callee brings in stack values, ra, temps into registers

* The responsibility for copies between stack and registers may fall

upon either the caller or the callee
16



Example 1 (g. 98)

Int leaf_example (int g, int h, int i, int))

{
intf;
f=(g+h)-(+));
return f;

}

Notes:
In this example, the callee took care of
saving the registers it needs.

The caller took care of saving its $ra and
$a0-%$a3.

leaf _example:

addi
SW
SW
SW
add
add
sub
add
lw
lw
lw
addi
ir

$sp, Psp, -12
$t1, 8($sp)
$t0, 4($sp)
$s0, 0($sp)
$t0, $a0, $al
$t1, $a2, $a3
$s0, $t0, $t1
$v0, $s0, $zero
$s0, 0($sp)
$t0, 4($sp)
$t1, 8($sp)
$sp, $sp, 12
$ra

Could have avoided using the stack altogether.
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Saving Conventions

 Caller saved: Temp registers $t0-$t9 (the callee won't
bother saving these, so save them if you care), $ra (it's
about to get over-written), $a0-$a3 (so you can put in
new arguments)

» Callee saved: $s0-$s7 (these typically contain “valuable”
data)

* Read the Notes on the class webpage on this topic
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Title

» Bullet
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