Lecture 5: Procedure Calls

e Today’s topics:

= Memory layout, numbers, control instructions
= Procedure calls

Memory Organization

» The space allocated on stack by a procedure is termed the activation
record (includes saved values and data local to the procedure) — frame
pointer points to the start of the record and stack pointer points to the
end — variable addresses are specified relative to $fp as $sp may
change during the execution of the procedure

» $gp points to area in memory that saves global variables

* Dynamically allocated storage (with malloc()) is placed on the heap

Static data (globals)

Text (instructions)

Recap — Numeric Representations

 Decimal 35, = 3x10' +5x10°
* Binary 00100011, = 1x2°> + 1x2t + 1x2°

* Hexadecimal (compact representation)
Ox23 or 23,, = 2x16' + 3x16°

0-15 (decimal) -> 0-9, a-f (hex)

Dec Binary Hex | Dec Binary Hex | Dec Binary Hex | Dec Binary Hex
0O 0000 OO0 4 0100 04 8 1000 08 | 12 1100 Oc
1 0001 01 5 0101 05 9 1001 09 | 13 1101 Od

2 0010 02 6 0110 06 | 10 1010 Oa | 14 1110 Oe

7

3 0011 O3 0111 Ov |11 1011 Ob | 15 1111 Of
3

Instruction Formats

Instructions are represented as 32-bit numbers (one word),
broken into 6 fields

R-type instruction add $tO, $s1, $s2

000000 10001 10010 01000 00000 100000

6 bits 5bits 5bits 5bhbits 5bhits 6 bits
op s rt rd shamt funct

opcode source source dest shiftamt function

I-type instruction lw $t0, 32($s3)
6 bits 5 bits 5 bits 16 bits
opcode Is rt constant

Logical Operations

Logical ops C operators Java operators MIPS instr
Shift Left << << sl
Shift Right >> >>> srl
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori

Bit-by-bit NOT ~ ~ nor

Control Instructions

e Conditional branch: Jump to instruction L1 if registerl
equals reqgister2: beq registerl, register2, L1
Similarly, bne and slt (set-on-less-than)

« Unconditional branch:
j L1
jr $sO0 (useful for large case statements and big jumps)

Convert to assembly:

if (i==))
f = g+h;
else

Control Instructions

e Conditional branch: Jump to instruction L1 if registerl
equals reqgister2: beq registerl, register2, L1
Similarly, bne and slt (set-on-less-than)

« Unconditional branch:
j L1
jr $sO0 (useful for large case statements and big jumps)

Convert to assembly:

if (i==j) bne $s3, $s4, Else
f = g+h; add $s0, $s1, $s2
else] Exit
f = g-h; Else: sub $s0, $s1, $s2

Exit: !

Example

Convert to assembly:
while (save[i] == k)

| +=1;

I and k are in $s3 and $s5 and
base of array save[] is in $s6

Example

Convert to assembly:
while (save[i] == k)

| +=1;

I and k are in $s3 and $s5 and
base of array save[] is in $s6

Loop: sl $tl1, $s3, 2
add $t1, $t1, $s6
lw $t0, O($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
| Loop

Exit:
sl $t1, $s3, 2
add $t1, $t1, $s6

Loop: Iw $tO, O($t1)

Exit:

bne $t0, $s5, Exit
addi $s3, $s3, 1
addi $t1, $t1, 4

] Loop

Registers

* The 32 MIPS registers are partitioned as follows:

= Register 0 : $zero always stores the constant 0

= Regs 2-3 : $Vv0, $v1 return values of a procedure

= Regs 4-7 : $a0-%$a3 input arguments to a procedure
= Regs 8-15: $t0-$t7 temporaries

= Regs 16-23: $s0-$s7 variables

* Regs 24-25: $t8-$t9 more temporaries

" Reg
" Reg
" Reg
" Reg

28 1 3gp global pointer
29 1 %sp stack pointer
30 :$fp frame pointer
31 :%ra return address

10

Procedures

11

Procedures

« Each procedure (function, subroutine) maintains a scratchpad of
register values — when another procedure is called (the callee), the
new procedure takes over the scratchpad — values may have to be
saved so we can safely return to the caller

= parameters (arguments) are placed where the callee can see them
= control is transferred to the callee

= acquire storage resources for callee

= execute the procedure

= place result value where caller can access it

= return control to caller

12

Jump-and-Link

* A special register (storage not part of the register file) maintains the
address of the instruction currently being executed — this is the
program counter (PC)

* The procedure call is executed by invoking the jump-and-link (jal)
instruction — the current PC (actually, PC+4) is saved in the register
$ra and we jump to the procedure’s address (the PC is accordingly
set to this address)

jal NewProcedureAddress

* Since jal may over-write a relevant value in $ra, it must be saved
somewhere (in memory?) before invoking the jal instruction

 How do we return control back to the caller after completing the
callee procedure?
13

The Stack

The register scratchpad for a procedure seems volatile —
It seems to disappear every time we switch procedures —
a procedure’s values are therefore backed up in memory
on a stack

High address

Proc A
call Proc B
é:.éll Proc C
reﬂj.rn

this way Low address return "

Stack grows l return

Saves and Restores

15

Storage Management on a Call/Return

* A new procedure must create space for all its variables on the stack

» Before/after executing the jal, the caller/callee must save relevant
values in $s0-$s7, $a0-$a3, $ra, temps into the stack space

* Arguments are copied into $a0-%$a3; the jal is executed
* After the callee creates stack space, it updates the value of $sp

* Once the callee finishes, it copies the return value into $vO0, frees
up stack space, and $sp is incremented

* On return, the caller/callee brings in stack values, ra, temps into registers

* The responsibility for copies between stack and registers may fall

upon either the caller or the callee
16

Example 1 (g. 98)

Int leaf_example (int g, int h, int i, int))

{
intf;
f=(g+h)-(+));
return f;

}

Notes:
In this example, the callee took care of
saving the registers it needs.

The caller took care of saving its $ra and
$a0-%$a3.

leaf _example:

addi
SW
SW
SW
add
add
sub
add
lw
lw
lw
addi
ir

$sp, Psp, -12
$t1, 8($sp)
$t0, 4($sp)
$s0, 0($sp)
$t0, $a0, $al
$t1, $a2, $a3
$s0, $t0, $t1
$v0, $s0, $zero
$s0, 0($sp)
$t0, 4($sp)
$t1, 8($sp)
$sp, $sp, 12
$ra

Could have avoided using the stack altogether.

17

Saving Conventions

 Caller saved: Temp registers $t0-$t9 (the callee won't
bother saving these, so save them if you care), $ra (it's
about to get over-written), $a0-$a3 (so you can put in
new arguments)

» Callee saved: $s0-$s7 (these typically contain “valuable”
data)

* Read the Notes on the class webpage on this topic

18

Title

» Bullet

19

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

