
1

Lecture 3: MIPS Instruction Set

• Today’s topic:

Wrap-up of performance equations
 MIPS instructions

• HW1 is due on Thursday

• TA office hours posted

2

A Primer on Clocks and Cycles

3

Performance Equation - I

CPU execution time = CPU clock cycles x Clock cycle time
Clock cycle time = 1 / Clock speed

If a processor has a frequency of 3 GHz, the clock ticks
3 billion times in a second – as we’ll soon see, with each
clock tick, one or more/less instructions may complete

If a program runs for 10 seconds on a 3 GHz processor,
how many clock cycles did it run for?

If a program runs for 2 billion clock cycles on a 1.5 GHz
processor, what is the execution time in seconds?

4

Performance Equation - II

CPU clock cycles = number of instrs x avg clock cycles
per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time x number of instrs x avg CPI

If a 2 GHz processor graduates an instruction every third cycle,
how many instructions are there in a program that runs for
10 seconds?

5

Factors Influencing Performance

Execution time = clock cycle time x number of instrs x avg CPI

• Clock cycle time: manufacturing process (how fast is each
transistor), how much work gets done in each pipeline stage
(more on this later)

• Number of instrs: the quality of the compiler and the
instruction set architecture

• CPI: the nature of each instruction and the quality of the
architecture implementation

6

Example

Execution time = clock cycle time x number of instrs x avg CPI

Which of the following two systems is better?

• A program is converted into 4 billion MIPS instructions by a
compiler ; the MIPS processor is implemented such that
each instruction completes in an average of 1.5 cycles and
the clock speed is 1 GHz

• The same program is converted into 2 billion x86 instructions;
the x86 processor is implemented such that each instruction
completes in an average of 6 cycles and the clock speed is
1.5 GHz

7

Power and Energy

• Total power = dynamic power + leakage power

• Dynamic power α activity x capacitance x voltage2 x frequency

• Leakage power α voltage

• Energy = power x time
(joules) (watts) (sec)

8

Example Problem

• A 1 GHz processor takes 100 seconds to execute a program,
while consuming 70 W of dynamic power and 30 W of
leakage power. Does the program consume less energy
in Turbo boost mode when the frequency is increased to
1.2 GHz?

9

Example Problem

• A 1 GHz processor takes 100 seconds to execute a program,
while consuming 70 W of dynamic power and 30 W of
leakage power. Does the program consume less energy
in Turbo boost mode when the frequency is increased to
1.2 GHz?

Normal mode energy = 100 W x 100 s = 10,000 J
Turbo mode energy = (70 x 1.2 + 30) x 100/1.2 = 9,500 J

Note:
Frequency only impacts dynamic power, not leakage power.
We assume that the program’s CPI is unchanged when

frequency is changed, i.e., exec time varies linearly
with cycle time.

10

Benchmark Suites

• Each vendor announces a SPEC rating for their system
 a measure of execution time for a fixed collection of

programs
 is a function of a specific CPU, memory system, IO

system, operating system, compiler
 enables easy comparison of different systems

The key is coming up with a collection of relevant programs

11

SPEC CPU

• SPEC: System Performance Evaluation Corporation, an industry
consortium that creates a collection of relevant programs

• The 2006 version includes 12 integer and 17 floating-point applications

• The SPEC rating specifies how much faster a system is, compared to
a baseline machine – a system with SPEC rating 600 is 1.5 times
faster than a system with SPEC rating 400

• Note that this rating incorporates the behavior of all 29 programs – this
may not necessarily predict performance for your favorite program!

• SPEC 2017 was released recently

12

Deriving a Single Performance Number

How is the performance of 29 different apps compressed
into a single performance number?

• SPEC uses geometric mean (GM) – the execution time
of each program is multiplied and the Nth root is derived

• Another popular metric is arithmetic mean (AM) – the
average of each program’s execution time

• Weighted arithmetic mean – the execution times of some
programs are weighted to balance priorities

13

Amdahl’s Law

• Architecture design is very bottleneck-driven – make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

• Example: a web server spends 40% of time in the CPU
and 60% of time doing I/O – a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) – Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66)

14

Common Principles

• Amdahl’s Law

• Energy: performance improvements typically also result
in energy improvements – less leakage

• 90-10 rule: 10% of the program accounts for 90% of
execution time

• Principle of locality: the same data/code will be used
again (temporal locality), nearby data/code will be
touched next (spatial locality)

15

Recap

• Knowledge of hardware improves software quality:
compilers, OS, threaded programs, memory management

• Important trends: growing transistors, move to multi-core
and accelerators, slowing rate of performance improvement,
power/thermal constraints, long memory/disk latencies

• Reasoning about performance: clock speeds, CPI,
benchmark suites, performance equations

• Next: assembly instructions

16

Instruction Set

• Understanding the language of the hardware is key to understanding
the hardware/software interface

• A program (in say, C) is compiled into an executable that is composed
of machine instructions – this executable must also run on future
machines – for example, each Intel processor reads in the same x86
instructions, but each processor handles instructions differently

• Java programs are converted into portable bytecode that is converted
into machine instructions during execution (just-in-time compilation)

• What are important design principles when defining the instruction
set architecture (ISA)?

17

Instruction Set

• Important design principles when defining the
instruction set architecture (ISA):

 keep the hardware simple – the chip must only
implement basic primitives and run fast
 keep the instructions regular – simplifies the

decoding/scheduling of instructions

We will later discuss RISC vs CISC

18

A Basic MIPS Instruction

C code: a = b + c ;

Assembly code: (human-friendly machine instructions)
add a, b, c # a is the sum of b and c

Machine code: (hardware-friendly machine instructions)
00000010001100100100000000100000

Translate the following C code into assembly code:
a = b + c + d + e;

19

Example

C code a = b + c + d + e;
translates into the following assembly code:

add a, b, c add a, b, c
add a, a, d or add f, d, e
add a, a, e add a, a, f

• Instructions are simple: fixed number of operands (unlike C)
• A single line of C code is converted into multiple lines of
assembly code

• Some sequences are better than others… the second
sequence needs one more (temporary) variable f

20

Subtract Example

C code f = (g + h) – (i + j);

Assembly code translation with only add and sub instructions:

21

Subtract Example

C code f = (g + h) – (i + j);
translates into the following assembly code:

add t0, g, h add f, g, h
add t1, i, j or sub f, f, i
sub f, t0, t1 sub f, f, j

• Each version may produce a different result because
floating-point operations are not necessarily
associative and commutative… more on this later

22

Operands

• In C, each “variable” is a location in memory

• In hardware, each memory access is expensive – if
variable a is accessed repeatedly, it helps to bring the
variable into an on-chip scratchpad and operate on the
scratchpad (registers)

• To simplify the instructions, we require that each
instruction (add, sub) only operate on registers

• Note: the number of operands (variables) in a C program is
very large; the number of operands in assembly is fixed…
there can be only so many scratchpad registers

23

Registers

• The MIPS ISA has 32 registers (x86 has 8 registers) –
Why not more? Why not less?

• Each register is 32-bit wide (modern 64-bit architectures
have 64-bit wide registers)

• A 32-bit entity (4 bytes) is referred to as a word

• To make the code more readable, registers are
partitioned as $s0-$s7 (C/Java variables), $t0-$t9
(temporary variables)…

24

Memory Operands

• Values must be fetched from memory before (add and sub)
instructions can operate on them

Load word
lw $t0, memory-address

Store word
sw $t0, memory-address

How is memory-address determined?

Register Memory

Register Memory

25

Memory Address

• The compiler organizes data in memory… it knows the
location of every variable (saved in a table)… it can fill
in the appropriate mem-address for load-store instructions

int a, b, c, d[10]

Memory

…

Base address

26

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

