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Lecture 3: MIPS Instruction Set

• Today’s topic: 

Wrap-up of performance equations
 MIPS instructions

• HW1 is due on Thursday

• TA office hours posted
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A Primer on Clocks and Cycles
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Performance Equation - I

CPU execution time = CPU clock cycles  x  Clock cycle time
Clock cycle time = 1 / Clock speed

If a processor has a frequency of 3 GHz, the clock ticks
3 billion times in a second – as we’ll soon see, with each
clock tick, one or more/less instructions may complete

If a program runs for 10 seconds on a 3 GHz processor,
how many clock cycles did it run for?

If a program runs for 2 billion clock cycles on a 1.5 GHz
processor, what is the execution time in seconds?
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Performance Equation - II

CPU clock cycles = number of instrs  x  avg clock cycles
per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time x number of instrs x avg CPI

If a 2 GHz processor graduates an instruction every third cycle,
how many instructions are there in a program that runs for
10 seconds?
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Factors Influencing Performance

Execution time = clock cycle time x number of instrs x avg CPI

• Clock cycle time: manufacturing process (how fast is each
transistor), how much work gets done in each pipeline stage
(more on this later)

• Number of instrs: the quality of the compiler and the
instruction set architecture

• CPI: the nature of each instruction and the quality of the
architecture implementation
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Example

Execution time = clock cycle time x number of instrs x avg CPI

Which of the following two systems is better?

• A program is converted into 4 billion MIPS instructions by a
compiler ; the MIPS processor is implemented such that
each instruction completes in an average of 1.5 cycles and
the clock speed is 1 GHz

• The same program is converted into 2 billion x86 instructions;
the x86 processor is implemented such that each instruction
completes in an average of 6 cycles and the clock speed is
1.5 GHz
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Power and Energy

• Total power = dynamic power + leakage power

• Dynamic power α activity x capacitance x voltage2 x frequency

• Leakage power α voltage

• Energy  =  power  x  time
(joules)     (watts)     (sec)
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Example Problem

• A 1 GHz processor takes 100 seconds to execute a program,
while consuming 70 W of dynamic power and 30 W of
leakage power.  Does the program consume less energy
in Turbo boost mode when the frequency is increased to
1.2 GHz?
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Example Problem

• A 1 GHz processor takes 100 seconds to execute a program,
while consuming 70 W of dynamic power and 30 W of
leakage power.  Does the program consume less energy
in Turbo boost mode when the frequency is increased to
1.2 GHz?

Normal mode energy = 100 W x 100 s = 10,000 J
Turbo mode energy = (70 x 1.2 + 30) x 100/1.2 = 9,500 J

Note: 
Frequency only impacts dynamic power, not leakage power.
We assume that the program’s CPI is unchanged when

frequency is changed, i.e., exec time varies linearly
with cycle time.
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Benchmark Suites

• Each vendor announces a SPEC rating for their system
 a measure of execution time for a fixed collection of

programs
 is a function of a specific CPU, memory system, IO

system, operating system, compiler
 enables easy comparison of different systems

The key is coming up with a collection of relevant programs 
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SPEC CPU

• SPEC: System Performance Evaluation Corporation, an industry
consortium that creates a collection of relevant programs

• The 2006 version includes 12 integer and 17 floating-point applications

• The SPEC rating specifies how much faster a system is, compared to
a baseline machine – a system with SPEC rating 600 is 1.5 times 
faster than a system with SPEC rating 400

• Note that this rating incorporates the behavior of all 29 programs – this
may not necessarily predict performance for your favorite program!

• SPEC 2017 was released recently
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Deriving a Single Performance Number

How is the performance of 29 different apps compressed
into a single performance number?

• SPEC uses geometric mean (GM) – the execution time
of each program is multiplied and the Nth root is derived

• Another popular metric is arithmetic mean (AM) – the
average of each program’s execution time

• Weighted arithmetic mean – the execution times of some
programs are weighted to balance priorities
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Amdahl’s Law

• Architecture design is very bottleneck-driven – make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

• Example: a web server spends 40% of time in the CPU
and 60% of time doing I/O – a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) – Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66)
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Common Principles

• Amdahl’s Law

• Energy: performance improvements typically also result
in energy improvements – less leakage

• 90-10 rule: 10% of the program accounts for 90% of
execution time

• Principle of locality: the same data/code will be used
again (temporal locality), nearby data/code will be
touched next (spatial locality)
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Recap

• Knowledge of hardware improves software quality:
compilers, OS, threaded programs, memory management

• Important trends: growing transistors, move to multi-core
and accelerators, slowing rate of performance improvement,
power/thermal constraints, long memory/disk latencies

• Reasoning about performance: clock speeds, CPI, 
benchmark suites, performance equations

• Next: assembly instructions
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Instruction Set

• Understanding the language of the hardware is key to understanding
the hardware/software interface

• A program (in say, C) is compiled into an executable that is composed
of machine instructions – this executable must also run on future
machines – for example, each Intel processor reads in the same x86
instructions, but each processor handles instructions differently

• Java programs are converted into portable bytecode that is converted
into machine instructions during execution (just-in-time compilation)

• What are important design principles when defining the instruction
set architecture (ISA)?
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Instruction Set

• Important design principles when defining the
instruction set architecture (ISA):

 keep the hardware simple – the chip must only
implement basic primitives and run fast
 keep the instructions regular – simplifies the

decoding/scheduling of instructions

We will later discuss RISC vs CISC
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A Basic MIPS Instruction

C  code:                                  a = b + c ;

Assembly code: (human-friendly machine instructions)
add   a, b, c      #  a is the sum of b and c

Machine code: (hardware-friendly machine instructions)
00000010001100100100000000100000

Translate the following C code into assembly code:
a = b + c + d + e;
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Example

C code    a = b + c + d + e;
translates into the following assembly code:

add  a, b, c                    add  a, b, c
add  a, a, d         or        add  f, d, e
add  a, a, e                    add  a, a, f

• Instructions are simple: fixed number of operands (unlike C)
• A single line of C code is converted into multiple lines of
assembly code

• Some sequences are better than others… the second
sequence needs one more (temporary) variable  f
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Subtract Example

C code    f = (g + h) – (i + j);

Assembly code translation with only add and sub instructions:
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Subtract Example

C code    f = (g + h) – (i + j);
translates into the following assembly code:

add  t0, g, h                add  f, g, h  
add  t1,  i, j         or     sub   f, f, i
sub  f,   t0, t1              sub   f, f, j

• Each version may produce a different result because
floating-point operations are not necessarily
associative and commutative… more on this later
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Operands

• In C, each “variable” is a location in memory

• In hardware, each memory access is expensive – if 
variable a is accessed repeatedly, it helps to bring the
variable into an on-chip scratchpad and operate on the
scratchpad (registers)

• To simplify the instructions, we require that each
instruction (add, sub) only operate on registers

• Note: the number of operands (variables) in a C program is
very large; the number of operands in assembly is fixed…
there can be only so many scratchpad registers
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Registers

• The MIPS ISA has 32 registers (x86 has 8 registers) –
Why not more? Why not less?

• Each register is 32-bit wide  (modern 64-bit architectures
have 64-bit wide registers)

• A 32-bit entity (4 bytes) is referred to as a word

• To make the code more readable, registers are
partitioned as $s0-$s7 (C/Java variables), $t0-$t9
(temporary variables)…
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Memory Operands

• Values must be fetched from memory before (add and sub)
instructions can operate on them

Load word
lw  $t0, memory-address

Store word
sw  $t0, memory-address

How is memory-address determined?

Register Memory

Register Memory
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Memory Address

• The compiler organizes data in memory… it knows the
location of every variable (saved in a table)… it can fill
in the appropriate mem-address for load-store instructions

int  a, b, c, d[10]

Memory

…

Base address



26

Title

• Bullet
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