
1

Lecture 17: Basic Pipelining

• Today’s topics:

� 5-stage pipeline
� Hazards and instruction scheduling

• Mid-term exam stats:
� Highest: 90, Mean: 58

2

Multi-Cycle Processor

• Single memory unit shared by instructions and memory
• Single ALU also used for PC updates
• Registers (latches) to store the result of every block

3

The Assembly Line

A

Start and finish a job before moving to the next

Time

Jobs

Break the job into smaller stages
B C

A B C

A B C

A B C

Unpipelined

Pipelined

4

Performance Improvements?

• Does it take longer to finish each individual job?

• Does it take shorter to finish a series of jobs?

• What assumptions were made while answering these
questions?

• Is a 10-stage pipeline better than a 5-stage pipeline?

5

Quantitative Effects

• As a result of pipelining:
� Time in ns per instruction goes up
� Each instruction takes more cycles to execute
� But… average CPI remains roughly the same
� Clock speed goes up
� Total execution time goes down, resulting in lower

average time per instruction
� Under ideal conditions, speedup

= ratio of elapsed times between successive instruction
completions

= number of pipeline stages = increase in clock speed

6

A 5-Stage Pipeline

7

A 5-Stage Pipeline

Use the PC to access the I-cache and increment PC by 4

8

A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume
branches take 2 cyc (there is enough work that branches can easily take more)

9

A 5-Stage Pipeline

ALU computation, effective address computation for load/store

10

A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles

11

A 5-Stage Pipeline

Write result of ALU computation or load into register file

12

Conflicts/Problems

• I-cache and D-cache are accessed in the same cycle – it
helps to implement them separately

• Registers are read and written in the same cycle – easy to
deal with if register read/write time equals cycle time/2
(else, use bypassing)

• Branch target changes only at the end of the second stage
-- what do you do in the meantime?

• Data between stages get latched into registers (overhead
that increases latency per instruction)

13

Hazards

• Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

• Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

• Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch – special case
of a data hazard – separate category because they are
treated in different ways

14

Structural Hazards

• Example: a unified instruction and data cache �
stage 4 (MEM) and stage 1 (IF) can never coincide

• The later instruction and all its successors are delayed
until a cycle is found when the resource is free � these
are pipeline bubbles

• Structural hazards are easy to eliminate – increase the
number of resources (for example, implement a separate
instruction and data cache)

15

Data Hazards

16

Bypassing

• Some data hazard stalls can be eliminated: bypassing

17

Data Hazard Stalls

18

Data Hazard Stalls

19

Example

add $1, $2, $3

lw $4, 8($1)

20

Example

lw $1, 8($2)

lw $4, 8($1)

21

Example

lw $1, 8($2)

sw $1, 8($3)

22

Control Hazards

• Simple techniques to handle control hazard stalls:
� for every branch, introduce a stall cycle (note: every

6th instruction is a branch!)
� assume the branch is not taken and start fetching the

next instruction – if the branch is taken, need hardware
to cancel the effect of the wrong-path instruction

� fetch the next instruction (branch delay slot) and
execute it anyway – if the instruction turns out to be
on the correct path, useful work was done – if the
instruction turns out to be on the wrong path,
hopefully program state is not lost

23

Branch Delay Slots

24

Slowdowns from Stalls

• Perfect pipelining with no hazards � an instruction
completes every cycle (total cycles ~ num instructions)
� speedup = increase in clock speed = num pipeline stages

• With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
instruction completes

• Total cycles = number of instructions + stall cycles

25

Title

• Bullet

