Lecture 17: Basic Pipelining

e Today'’s topics:

» 5-stage pipeline
* Hazards and instruction scheduling

 Mid-term exam stats:
* Highest: 90, Mean: 58

Multi-Cycle Processor

| ™

L PC Address

Instruction
or data

Memory

|- Data

Instruction
register ~ Data
¢+ Register #
Registers
| Reqgister #
Memory
data —9e»| Register #
register

>ALU

ALUOQut

 Single memory unit shared by instructions and memory
 Single ALU also used for PC updates

* Registers (latches) to store the result of every block

The Assembly Line

Unpipelined Start and finish a job before moving to the next

Jobs

» Time

Break the job into smaller stages

Pipelined

Performance Improvements?

» Does it take longer to finish each individual job?
e Does it take shorter to finish a series of jobs?

« \What assumptions were made while answering these
guestions?

e |s a 10-stage pipeline better than a 5-stage pipeline?

Quantitative Effects

 As a result of pipelining:

» Time In ns per instruction goes up

» Each instruction takes more cycles to execute

» But... average CPI remains roughly the same

» Clock speed goes up

» Total execution time goes down, resulting in lower
average time per instruction

» Under ideal conditions, speedup
= ratio of elapsed times between successive instruction

completions

= number of pipeline stages = increase in clock speed

A 5-Stage Pipeline

o
=] 8]
T

Fl:

W
I £

K:\

T _h
|
~]

& 2003 Elswvir Schimtn (USR] AL dghri resssnvng

A 5-Stage Pipeline

Use the PC to access the I-cache and increment PC by 4

Timee |in clock cpoksh

cot o2 23 coa L] cCa

: ﬂL’”- A

St lofs

N rjﬁn_ 3 IT—
. ._l_-'"fx“’ —l-l__

= H:@?

]

[h

& 2003 Elswvir Schimtn (USR] AL dghri resssnvng

A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume
branches take 2 cyc (there is enough work that branches can easily take more)

Timee |in clock cpoksh r

cot o2 23 coa L] cCa

T Fieg _ ; — | oM __I —{ Hemm
ol e e
S |l

& 2003 Elswvir Schimtn (USR] AL dghri resssnvng

A 5-Stage Pipeline

ALU computation, effective address computation for load/store

Timee |in clock cpoksh

cot o2 23 coa L] cCa

D 7 0 i
4]
' >

|.-',f

=] F.,T; @:

e ™

:E g

-

[h

& 2003 Elswvir Schimtn (USR] AL dghri resssnvng

A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles

Timee |in clock cpoksh

cot o2 23 coa L] cCa

1] F“':l_ g_ — o [_Iiw
ol O [l
—] b L
~d1u|— + FReq
T
3
L

:E g

|.-',f
Oy 2 =

e ™

|
2

-

[h

& 2003 Elswvir Schimtn (USR] AL dghri resssnvng

A 5-Stage Pipeline

Write result of ALU computation or load into register file

Timee |in clock cpoksh

cot o2 2e coa L] cCa

oy i s I e

A

= H:@?

|L

]

[h

& 2003 Elswvir Schimtn (USR] AL dghri resssnvng

11

Conflicts/Problems

* |-cache and D-cache are accessed in the same cycle — it
helps to implement them separately

» Registers are read and written in the same cycle — easy to
deal with if register read/write time equals cycle time/2
(else, use bypassing)

e Branch target changes only at the end of the second stage
-- what do you do in the meantime?

« Data between stages get latched into registers (overhead
that increases latency per instruction)

12

Hazards

o Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

e Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

« Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch — special case
of a data hazard — separate category because they are
treated in different ways

13

Structural Hazards

« Example: a unified instruction and data cache -
stage 4 (MEM) and stage 1 (IF) can never coincide

* The later instruction and all its successors are delayed
until a cycle is found when the resource is free = these
are pipeline bubbles

 Structural hazards are easy to eliminate — increase the

number of resources (for example, implement a separate
Instruction and data cache)

14

Data Hazards

Time (in clock cycles) -
Value of CC1 cc2 CcCc3 cc4 CC5 CcC6 cCC7 ccs CcC9
register $2: 10 10 10 10 10/~20 =20 =20 =20 =20
Frogram
execution
order

(in instructions) o -

1
: - I~ |-Re
sub . $1,83 M SReg] o .

= i IJ M
1= . —I — -
and $12, ©, $5 IM — —=Reg DM — —E@
i — _J' il
or $13, 36, I |— _e - | DM e —EI
1l } ==
S ey £ pry 2hl
add $14, M= Reg |5 Hhipv— —Reg
L B]
L=t
sw 315, 100 — - |
r W FRea_| [DM} HRed

15

Bypassing

Time (in clock cycles) -

CC1 cc 2 CCc3 cc4 CC5 CCo CcCr ccs cCH
Value of register $2: 10 10 10 10 10/-20 -20 -20 -20 =20
Value of EX/MEM: X X X =20 X X X X X
Value of MEM/WB: X X X X -20 X X X X
Program
execufion
order
(in instructions)
and $12, . §5 Req
|8
or $13, $6,
add $14,
sw $15, 100
r

« Some data hazard stalls can be eliminated: bypassing 16

Data Hazard Stalls

Time (in clock cycles) -
CC 1 CC 2 cC3 CC4 CC5H CCE6H cCv CC8g CC9

Frogram
execution
order

{in instructions) - _ _
1
P
1= -
doo, %9 IVt =i _ \l_ DM
an 5 Reg | _F/ T;]_I- %

or $8, -, $6 I a } -[Dm—_—ﬁgj
add $9, -, M _>

|

L i
sit $1, $6, §7 w0 |

; IM —dﬁét D— DM eq
L o 1

Data Hazard Stalls

Time (in clock cycles)
cCH cC2 CC3 CC4 €5

Frogram
execution
order

{(in instructions) - = =

lw), 20($1) IM Reg | Dm_r 10

| i — I
and nop IV — -ErLReg D -I-;%
T =4 | |
)
add 1, $5 M TS
-
| | V¥
or $B. 3 $6 i - _d_
e
add :
r I

bubble

)
2
1

-[DMV e

R

CCB8 cCcH
]
J

|

DM ’EQJI

CC 10

18

Example

add $1,$2,$3 [MHFREC > o] -
w $4, 8($1) | g g —D oM

19

Example

w o $1,8$2) [WMHFREC > oM
lw $4, 8($1) 'M—%_——DT_E@_r &
A L H

20

Example

w o $1,8$2) [WMHFREC > oM
sw $1, 8($3) [l ——D‘]ﬁ@_r iy
A L H

21

Control Hazards

« Simple technigues to handle control hazard stalls:

» for every branch, introduce a stall cycle (note: every
6t instruction is a branch!)

» assume the branch is not taken and start fetching the
next instruction — if the branch is taken, need hardware
to cancel the effect of the wrong-path instruction

» fetch the next instruction (branch delay slot) and
execute it anyway — if the instruction turns out to be
on the correct path, useful work was done — if the
Instruction turns out to be on the wrong path,
hopefully program state is not lost

22

Branch Delay Slots

a. From before

add $s1, $s2, $s3

if $s2 = 0 then ——

Delay slot

A

Becomes

if $s2 = 0 then ——

add $s1, $s2, $s3

A

b. From target

sub $t4, $t5, $16 =—

add $s1, $s2, $s3

if $s1 = 0 then —

Delay slot

Becomes

add $s1, $s2, $s3

if 3s1 = 0 then —

sub $t4, $t5, $t6

23

Slowdowns from Stalls

» Perfect pipelining with no hazards - an instruction
completes every cycle (total cycles ~ num instructions)
—> speedup = increase Iin clock speed = num pipeline stages

* With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
Instruction completes

 Total cycles = number of instructions + stall cycles

24

Title

e Bullet

25

