Lecture 17: Basic Pipelining

e Today'’s topics:

» 5-stage pipeline
* Hazards and instruction scheduling

 Mid-term exam stats:
* Highest: 90, Mean: 58
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 Single memory unit shared by instructions and memory
 Single ALU also used for PC updates

* Registers (latches) to store the result of every block



The Assembly Line

Unpipelined Start and finish a job before moving to the next

Jobs

» Time

Break the job into smaller stages

Pipelined



Performance Improvements?

» Does it take longer to finish each individual job?
e Does it take shorter to finish a series of jobs?

« \What assumptions were made while answering these
guestions?

e |s a 10-stage pipeline better than a 5-stage pipeline?



Quantitative Effects

 As a result of pipelining:

» Time In ns per instruction goes up

» Each instruction takes more cycles to execute

» But... average CPI remains roughly the same

» Clock speed goes up

» Total execution time goes down, resulting in lower
average time per instruction

» Under ideal conditions, speedup
= ratio of elapsed times between successive instruction

completions

= number of pipeline stages = increase in clock speed



A 5-Stage Pipeline
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A 5-Stage Pipeline

Use the PC to access the I-cache and increment PC by 4

Timee |in clock cpoksh
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A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume
branches take 2 cyc (there is enough work that branches can easily take more)
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A 5-Stage Pipeline

ALU computation, effective address computation for load/store

Timee |in clock cpoksh

cot o2 23 coa L] cCa
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A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles

Timee |in clock cpoksh

cot o2 23 coa L] cCa
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A 5-Stage Pipeline

Write result of ALU computation or load into register file

Timee |in clock cpoksh
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Conflicts/Problems

* |-cache and D-cache are accessed in the same cycle — it
helps to implement them separately

» Registers are read and written in the same cycle — easy to
deal with if register read/write time equals cycle time/2
(else, use bypassing)

e Branch target changes only at the end of the second stage
-- what do you do in the meantime?

« Data between stages get latched into registers (overhead
that increases latency per instruction)
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Hazards

o Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

e Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

« Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch — special case
of a data hazard — separate category because they are
treated in different ways
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Structural Hazards

« Example: a unified instruction and data cache -
stage 4 (MEM) and stage 1 (IF) can never coincide

* The later instruction and all its successors are delayed
until a cycle is found when the resource is free = these
are pipeline bubbles

 Structural hazards are easy to eliminate — increase the

number of resources (for example, implement a separate
Instruction and data cache)
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Data Hazards

Time (in clock cycles) -
Value of CC1 cc2 CcCc3 cc4 CC5 CcC6 cCC7 ccs CcC9
register $2: 10 10 10 10 10/~20 =20 =20 =20 =20
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Bypassing

Time (in clock cycles) -

CC1 cc 2 CCc3 cc4 CC5 CCo CcCr ccs cCH
Value of register $2: 10 10 10 10 10/-20 -20 -20 -20 =20
Value of EX/MEM: X X X =20 X X X X X
Value of MEM/WB: X X X X -20 X X X X
Program
execufion
order
(in instructions)
and $12, . §5 Req
|8
or $13, $6,
add $14,
sw $15, 100
r

« Some data hazard stalls can be eliminated: bypassing 16



Data Hazard Stalls
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Data Hazard Stalls

Time (in clock cycles)
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Example

add $1,$2,$3 [MHFREC > o] -
w  $4, 8($1) | g g —D oM
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Example

w o $1,8$2) [WMHFREC > oM
lw  $4, 8($1) 'M—%_——DT_E@_r &
A L H
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Example

w o $1,8$2) [WMHFREC > oM
sw  $1, 8($3) [l ——D‘]ﬁ@_r iy
A L H
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Control Hazards

« Simple technigues to handle control hazard stalls:

» for every branch, introduce a stall cycle (note: every
6t instruction is a branch!)

» assume the branch is not taken and start fetching the
next instruction — if the branch is taken, need hardware
to cancel the effect of the wrong-path instruction

» fetch the next instruction (branch delay slot) and
execute it anyway — if the instruction turns out to be
on the correct path, useful work was done — if the
Instruction turns out to be on the wrong path,
hopefully program state is not lost
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Branch Delay Slots

a. From before

add $s1, $s2, $s3

if $s2 = 0 then ——

Delay slot

A

Becomes

if $s2 = 0 then ——

add $s1, $s2, $s3

A

b. From target

sub $t4, $t5, $16 =—

add $s1, $s2, $s3

if $s1 = 0 then —

Delay slot

Becomes

add $s1, $s2, $s3

if 3s1 = 0 then —

sub $t4, $t5, $t6
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Slowdowns from Stalls

» Perfect pipelining with no hazards - an instruction
completes every cycle (total cycles ~ num instructions)
—> speedup = increase Iin clock speed = num pipeline stages

* With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
Instruction completes

 Total cycles = number of instructions + stall cycles

24



Title

e Bullet
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