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Lecture 27: Multiprocessors

• Today’s topics: 
 Shared memory vs message-passing
 Simultaneous multi-threading (SMT)
 GPUs
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Shared-Memory Vs. Message-Passing

Shared-memory:
• Well-understood programming model
• Communication is implicit and hardware handles protection
• Hardware-controlled caching

Message-passing:
• No cache coherence  simpler hardware
• Explicit communication  easier for the programmer to
restructure code

• Software-controlled caching
• Sender can initiate data transfer
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Ocean Kernel

Procedure Solve(A)
begin

diff = done = 0;
while (!done) do

diff = 0;
for i  1 to n do

for j  1 to n do
temp = A[i,j];
A[i,j]  0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] – temp);

end for
end for
if (diff < TOL) then done = 1;

end while
end procedure 
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Shared Address Space Model

int  n, nprocs;
float  **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin

read(n); read(nprocs);
A  G_MALLOC();
initialize (A);
CREATE (nprocs,Solve,A);
WAIT_FOR_END (nprocs);

end main

procedure Solve(A)
int i, j, pid, done=0;
float temp, mydiff=0;
int mymin = 1 + (pid * n/procs);
int mymax = mymin + n/nprocs -1;
while (!done) do

mydiff = diff = 0;
BARRIER(bar1,nprocs);
for i  mymin to mymax

for j  1 to n do
…

endfor
endfor
LOCK(diff_lock);
diff += mydiff;
UNLOCK(diff_lock);
BARRIER (bar1, nprocs);
if (diff < TOL) then done = 1;
BARRIER (bar1, nprocs);

endwhile



5

Message Passing Model
main()

read(n); read(nprocs);
CREATE (nprocs-1, Solve);
Solve();
WAIT_FOR_END (nprocs-1);

procedure Solve()
int i, j, pid, nn = n/nprocs, done=0;
float temp, tempdiff, mydiff = 0;
myA  malloc(…)
initialize(myA);
while (!done) do

mydiff = 0;
if (pid != 0) 

SEND(&myA[1,0], n, pid-1, ROW);
if (pid != nprocs-1)

SEND(&myA[nn,0], n, pid+1, ROW);
if (pid != 0)

RECEIVE(&myA[0,0], n, pid-1, ROW);
if (pid != nprocs-1)

RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i  1 to nn do
for j  1 to n do

…
endfor

endfor
if (pid != 0)

SEND(mydiff, 1, 0, DIFF);
RECEIVE(done, 1, 0, DONE);

else
for i  1 to nprocs-1 do

RECEIVE(tempdiff, 1, *, DIFF);
mydiff += tempdiff;

endfor
if  (mydiff < TOL)  done = 1;
for i  1 to nprocs-1  do

SEND(done, 1, I, DONE);
endfor

endif
endwhile
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Multithreading Within a Processor

• Until now, we have executed multiple threads of an
application on different processors – can multiple
threads execute concurrently on the same processor?

• Why is this desireable?
 inexpensive – one CPU, no external interconnects
 no remote or coherence misses (more capacity misses)

• Why does this make sense?
 most processors can’t find enough work – peak IPC

is 6, average IPC is 1.5!
 threads can share resources  we can increase

threads without a corresponding linear increase in area
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How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC.

Cycles

• Superscalar processor has high under-utilization – not enough work every
cycle, especially when there is a cache miss

• Fine-grained multithreading can only issue instructions from a single thread
in a cycle – can not find max work every cycle, but cache misses can be tolerated

• Simultaneous multithreading can issue instructions from any thread every
cycle – has the highest probability of finding work for every issue slot

Superscalar Fine-Grained
Multithreading

Simultaneous
Multithreading

Thread 1

Thread 2
Thread 3
Thread 4
Idle
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Performance Implications of SMT

• Single thread performance is likely to go down (caches,
branch predictors, registers, etc. are shared) – this effect
can be mitigated by trying to prioritize one thread

• With eight threads in a processor with many resources,
SMT yields throughput improvements of roughly 2-4
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SIMD Processors

• Single instruction, multiple data

• Such processors offer energy efficiency because a single
instruction fetch can trigger many data operations

• Such data parallelism may be useful for many
image/sound and numerical applications
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GPUs

• Initially developed as graphics accelerators; now viewed
as one of the densest compute engines available

• Many on-going efforts to run non-graphics workloads on
GPUs, i.e., use them as general-purpose GPUs or GPGPUs

• C/C++ based programming platforms enable wider use
of GPGPUs – CUDA from NVidia and OpenCL from an
industry consortium

• A heterogeneous system has a regular host CPU and a
GPU that handles (say) CUDA code (they can both be
on the same chip)
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The GPU Architecture

• SIMT – single instruction, multiple thread; a GPU has
many SIMT cores

• A large data-parallel operation is partitioned into many
thread blocks (one per SIMT core); a thread block is
partitioned into many warps (one warp running at a
time in the SIMT core); a warp is partitioned across many
in-order pipelines (each is called a SIMD lane)

• A SIMT core can have multiple active warps at a time,
i.e., the SIMT core stores the registers for each warp;
warps can be context-switched at low cost; a warp
scheduler keeps track of runnable warps and schedules
a new warp if the currently running warp stalls
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The GPU Architecture
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Architecture Features

• Simple in-order pipelines that rely on thread-level parallelism
to hide long latencies

• Many registers (~1K) per in-order pipeline (lane) to support
many active warps

• When a branch is encountered, some of the lanes proceed
along the “then” case depending on their data values;
later, the other lanes evaluate the “else” case; a branch
cuts the data-level parallelism by half (branch divergence)

• When a load/store is encountered, the requests from all
lanes are coalesced into a few 128B cache line requests;
each request may return at a different time (mem divergence)
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GPU Memory Hierarchy

• Each SIMT core has a private L1 cache (shared by the
warps on that core)

• A large L2 is shared by all SIMT cores; each L2 bank
services a subset of all addresses

• Each L2 partition is connected to its own memory
controller and memory channel

• The GDDR5 memory system runs at higher frequencies,
and uses chips with more banks, wide IO, and better
power delivery networks

• A portion of GDDR5 memory is private to the GPU and the
rest is accessible to the host CPU (the GPU performs copies)
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