Lecture 27: Multiprocessors

e Today’s topics:
= Shared memory vs message-passing
= Simultaneous multi-threading (SMT)
= GPUs

Shared-Memory Vs. Message-Passing

Shared-memory:

* Well-understood programming model

« Communication is implicit and hardware handles protection
« Hardware-controlled caching

Message-passing:

* No cache coherence = simpler hardware

« Explicit communication - easier for the programmer to
restructure code

« Software-controlled caching

e Sender can initiate data transfer

Ocean Kernel

Procedure Solve(A)

begin Row 1
diff = done = 0;
while ('done) do
diff = 0; Row k

fori < 1tondo
forj < 1ltondo
temp = A[ij];
Ali,jl € 0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] — temp);
end for
end for
if (diff < TOL) then done = 1,
end while
end procedure

Row 2k

Row 3k

Shared Address Space Model

procedure Solve(A)
int i, j, pid, done=0;

int n, nprocs; float temp, mydiff=0;
float **A, diff; int mymin = 1 + (pid * n/procs);
LOCKDEC(diff_lock); int mymax = mymin + n/nprocs -1;
BARDEC(barl); while (!done) do
mydiff = diff = 0;
BARRIER(barl,nprocs);
main() for i € mymin to mymax
begin forj < 1tondo
read(n); read(nprocs);
A & G_MALLOCY(); endfor
initialize (A); endfor
CREATE (nprocs,Solve,A); LOCK(diff_lock);
WAIT_FOR_END (nprocs); diff += mydiff;
end main UNLOCK(diff_lock);

BARRIER (barl, nprocs);

If (diff < TOL) then done =1,

BARRIER (barl, nprocs);
endwhile

Message Passing Model

main()
read(n); read(nprocs);
CREATE (nprocs-1, Solve);
Solve();
WAIT_FOR_END (nprocs-1);

procedure Solve()

int i, J, pid, nn = n/nprocs, done=0;

float temp, tempdiff, mydiff = O;
myA < malloc(...)
initialize(myA);
while (!done) do

mydiff = 0;

iIf (pid = 0)

SEND(&myA[1,0], n, pid-1, ROW);

iIf (pid != nprocs-1)

SEND(&myA[nn,0], n, pid+1, ROW);

if (pid != 0)

RECEIVE(&myA[0,0], n, pid-1, ROW);

if (pid != nprocs-1)

RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

fori € 1tonndo
forj < 1tondo

endfor
endfor
if (pid !=0)
SEND(mydiff, 1, O, DIFF);
RECEIVE(done, 1, 0, DONE);
else
fori €< 1 to nprocs-1 do
RECEIVE(tempdiff, 1, *, DIFF);
mydiff += tempdiff;
endfor
If (mydiff < TOL) done =1,
fori € 1to nprocs-1 do
SEND(done, 1, |, DONE);
endfor
endif

endwhile

Multithreading Within a Processor

 Until now, we have executed multiple threads of an
application on different processors — can multiple
threads execute concurrently on the same processor?

* Why is this desireable?
» Inexpensive — one CPU, no external interconnects
» No remote or coherence misses (more capacity misses)

* Why does this make sense?
» most processors can't find enough work — peak IPC
IS 6, average IPC is 1.5!
» threads can share resources - we can increase
threads without a corresponding linear increase in area
6

How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC.

F: I Thread 1
B Thread 2
v E_ Thread 3
Cycles Thread 4
B [Idle
Superscalar Fine-Grained Simultaneous

Multithreading Multithreading

» Superscalar processor has high under-utilization — not enough work every
cycle, especially when there is a cache miss

 Fine-grained multithreading can only issue instructions from a single thread
in a cycle — can not find max work every cycle, but cache misses can be tolerated

« Simultaneous multithreading can issue instructions from any thread every
cycle — has the highest probability of finding work for every issue slot

Performance Implications of SMT

 Single thread performance is likely to go down (caches,
branch predictors, registers, etc. are shared) — this effect
can be mitigated by trying to prioritize one thread

« With eight threads in a processor with many resources,
SMT vyields throughput improvements of roughly 2-4

SIMD Processors

e Single instruction, multiple data

e Such processors offer energy efficiency because a single
Instruction fetch can trigger many data operations

« Such data parallelism may be useful for many
Image/sound and numerical applications

GPUs

* Initially developed as graphics accelerators; now viewed
as one of the densest compute engines available

 Many on-going efforts to run non-graphics workloads on
GPUs, I.e., use them as general-purpose GPUs or GPGPUs

« C/C++ based programming platforms enable wider use
of GPGPUs — CUDA from NVidia and OpenCL from an
Industry consortium

* A heterogeneous system has a regular host CPU and a
GPU that handles (say) CUDA code (they can both be

on the same chip) 10

The GPU Architecture

« SIMT — single instruction, multiple thread; a GPU has
many SIMT cores

A large data-parallel operation is partitioned into many
thread blocks (one per SIMT core); a thread block is
partitioned into many warps (one warp running at a
time in the SIMT core); a warp is partitioned across many
In-order pipelines (each is called a SIMD lane)

* A SIMT core can have multiple active warps at a time,
l.e., the SIMT core stores the registers for each warp;
warps can be context-switched at low cost; a warp
scheduler keeps track of runnable warps and schedules
a new warp if the currently running warp stalls 1

The GPU Architecture

SIMT Core

SIMT Core

SIMT Core

Mem Partition

Mem Partition

SIMDJ|Lanes
Mem Partition

GDDRS5
Controller

L1

12

Architecture Features

« Simple in-order pipelines that rely on thread-level parallelism
to hide long latencies

* Many registers (~1K) per in-order pipeline (lane) to support
many active warps

 When a branch is encountered, some of the lanes proceed
along the “then” case depending on their data values;
later, the other lanes evaluate the “else” case; a branch
cuts the data-level parallelism by half (branch divergence)

 When a load/store is encountered, the requests from all
lanes are coalesced into a few 128B cache line requests;
each request may return at a different time (mem divergence)

GPU Memory Hierarchy

 Each SIMT core has a private L1 cache (shared by the
warps on that core)

* Alarge L2 is shared by all SIMT cores; each L2 bank
services a subset of all addresses

e Each L2 partition is connected to its own memory
controller and memory channel

 The GDDR5 memory system runs at higher frequencies,
and uses chips with more banks, wide 10, and better
power delivery networks

A portion of GDDR5 memory is private to the GPU and the
rest is accessible to the host CPU (the GPU performs copies)

Title

» Bullet

15

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

