
1

Lecture 24: Virtual Memory, Multiprocessors

• Today’s topics:

 Virtual memory
 Multiprocessors, cache coherence

2

Virtual Memory

• Processes deal with virtual memory – they have the
illusion that a very large address space is available to
them

• There is only a limited amount of physical memory that is
shared by all processes – a process places part of its
virtual memory in this physical memory and the rest is
stored on disk (called swap space)

• Thanks to locality, disk access is likely to be uncommon

• The hardware ensures that one process cannot access
the memory of a different process

3

Virtual Memory

4

Address Translation

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to physical
page number

Physical address

13

5

Memory Hierarchy Properties

• A virtual memory page can be placed anywhere in physical
memory (fully-associative)

• Replacement is usually LRU (since the miss penalty is
huge, we can invest some effort to minimize misses)

• A page table (indexed by virtual page number) is used for
translating virtual to physical page number

• The page table is itself in memory

6

TLB

• Since the number of pages is very high, the page table
capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
may not even be found in the cache – two expensive
memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
increases memory waste

7

TLB and Cache

• Is the cache indexed with virtual or physical address?
 To index with a physical address, we will have to first

look up the TLB, then the cache  longer access time
 Multiple virtual addresses can map to the same

physical address – must ensure that these
different virtual addresses will map to the same
location in cache – else, there will be two different
copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
 Since multiple virtual addresses can map to the same

physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present

8

Cache and TLB Pipeline

TLB

Virtual address

Tag array Data array

Physical tag comparion

Virtual page number Virtual
index

Offset

Physical page number

Physical tag

Virtually Indexed; Physically Tagged Cache

9

Bad Events

• Consider the longest latency possible for a load instruction:
 TLB miss: must look up page table to find translation for v.page P
 Calculate the virtual memory address for the page table entry

that has the translation for page P – let’s say, this is v.page Q
 TLB miss for v.page Q: will require navigation of a hierarchical

page table (let’s ignore this case for now and assume we have
succeeded in finding the physical memory location (R) for page Q)
 Access memory location R (find this either in L1, L2, or memory)
We now have the translation for v.page P – put this into the TLB
We now have a TLB hit and know the physical page number – this

allows us to do tag comparison and check the L1 cache for a hit
 If there’s a miss in L1, check L2 – if that misses, check in memory
 At any point, if the page table entry claims that the page is on disk,
flag a page fault – the OS then copies the page from disk to memory
and the hardware resumes what it was doing before the page fault
… phew!

10

Multiprocessor Taxonomy

• SISD: single instruction and single data stream: uniprocessor

• MISD: no commercial multiprocessor: imagine data going
through a pipeline of execution engines

• SIMD: vector architectures: lower flexibility

• MIMD: most multiprocessors today: easy to construct with
off-the-shelf computers, most flexibility

11

Memory Organization - I

• Centralized shared-memory multiprocessor or
Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
memory – since all processors see the same memory
organization  uniform memory access (UMA)

• Shared-memory because all processors can access the
entire memory address space

• Can centralized memory emerge as a bandwidth
bottleneck? – not if you have large caches and employ
fewer than a dozen processors

12

SMPs or Centralized Shared-Memory

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

13

Memory Organization - II

• For higher scalability, memory is distributed among
processors  distributed memory multiprocessors

• If one processor can directly address the memory local
to another processor, the address space is shared 
distributed shared-memory (DSM) multiprocessor

• If memories are strictly local, we need messages to
communicate data  cluster of computers or multicomputers

• Non-uniform memory architecture (NUMA) since local
memory has lower latency than remote memory

14

Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

15

SMPs

• Centralized main memory and many caches  many
copies of the same data

• A system is cache coherent if a read returns the most
recently written value for that word

Time Event Value of X in Cache-A Cache-B Memory
0 - - 1
1 CPU-A reads X 1 - 1
2 CPU-B reads X 1 1 1
3 CPU-A stores 0 in X 0 1 0

16

Cache Coherence

A memory system is coherent if:
• P writes to X; no other processor writes to X; P reads X
and receives the value previously written by P

• P1 writes to X; no other processor writes to X; sufficient
time elapses; P2 reads X and receives value written by P1

• Two writes to the same location by two processors are
seen in the same order by all processors – write serialization

• The memory consistency model defines “time elapsed”
before the effect of a processor is seen by others

17

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

Write-update: when a processor writes, it updates other
shared copies of that block

18

Snooping-Based Protocols

• Three states for a block: invalid, shared, modified
• A write is placed on the bus and sharers invalidate themselves
• The protocols are referred to as MSI, MESI, etc.

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

19

Example

• P1 reads X: not found in cache-1, request sent on bus, memory responds,
X is placed in cache-1 in shared state

• P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1does nothing because this is just a read request,
memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

• P1 writes X: cache-1 has data in shared
state (shared only provides read perms),
request sent on bus, cache-2 snoops and
then invalidates its copy of X, cache-1
moves its state to modified

• P2 reads X: cache-2 has data in invalid
state, request sent on bus, cache-1 snoops
and realizes it has the only valid copy, so it
downgrades itself to shared state and
responds with data, X is placed in cache-2
in shared state, memory is also updated

20

Example

Request Cache
Hit/Miss

Request
on the bus

Who responds State in
Cache 1

State in
Cache 2

State in
Cache 3

State in
Cache 4

Inv Inv Inv Inv

P1: Rd X Miss Rd X Memory S Inv Inv Inv

P2: Rd X Miss Rd X Memory S S Inv Inv

P2: Wr X Perms
Miss

Upgrade X No response.
Other caches

invalidate.

Inv M Inv Inv

P3: Wr X Write
Miss

Wr X P2 responds Inv Inv M Inv

P3: Rd X Read Hit - - Inv Inv M Inv

P4: Rd X Read
Miss

Rd X P3 responds.
Mem wrtbk

Inv Inv S S

21

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

