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Lecture 24: Virtual Memory, Multiprocessors

• Today’s topics: 

 Virtual memory
 Multiprocessors, cache coherence
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Virtual Memory

• Processes deal with virtual memory – they have the
illusion that a very large address space is available to
them

• There is only a limited amount of physical memory that is
shared by all processes – a process places part of its
virtual memory in this physical memory and the rest is
stored on disk (called swap space)

• Thanks to locality, disk access is likely to be uncommon

• The hardware ensures that one process cannot access
the memory of a different process
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Virtual Memory
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Address Translation

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to physical
page number

Physical address

13
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Memory Hierarchy Properties

• A virtual memory page can be placed anywhere in physical
memory (fully-associative)

• Replacement is usually LRU (since the miss penalty is
huge, we can invest some effort to minimize misses)

• A page table (indexed by virtual page number) is used for
translating virtual to physical page number

• The page table is itself in memory
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TLB

• Since the number of pages is very high, the page table
capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
may not even be found in the cache – two expensive
memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
increases memory waste
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TLB and Cache

• Is the cache indexed with virtual or physical address?
 To index with a physical address, we will have to first

look up the TLB, then the cache  longer access time
 Multiple virtual addresses can map to the same

physical address – must ensure that these
different virtual addresses will map to the same
location in cache – else, there will be two different
copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
 Since multiple virtual addresses can map to the same

physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present
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Cache and TLB Pipeline

TLB

Virtual address

Tag array Data array

Physical tag comparion

Virtual page number Virtual 
index

Offset

Physical page number

Physical tag

Virtually Indexed; Physically Tagged Cache



9

Bad Events

• Consider the longest latency possible for a load instruction:
 TLB miss: must look up page table to find translation for v.page P 
 Calculate the virtual memory address for the page table entry

that has the translation for page P – let’s say, this is v.page Q
 TLB miss for v.page Q: will require navigation of a hierarchical

page table (let’s ignore this case for now and assume we have
succeeded in finding the physical memory location (R) for page Q)
 Access memory location R (find this either in L1, L2, or memory)
We now have the translation for v.page P – put this into the TLB
We now have a TLB hit and know the physical page number – this

allows us to do tag comparison and check the L1 cache for a hit
 If there’s a miss in L1, check L2 – if that misses, check in memory
 At any point, if the page table entry claims that the page is on disk,
flag a page fault – the OS then copies the page from disk to memory
and the hardware resumes what it was doing before the page fault
… phew!
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Multiprocessor Taxonomy

• SISD: single instruction and single data stream: uniprocessor

• MISD: no commercial multiprocessor: imagine data going
through a pipeline of execution engines

• SIMD: vector architectures: lower flexibility

• MIMD: most multiprocessors today: easy to construct with
off-the-shelf computers, most flexibility
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Memory Organization - I

• Centralized shared-memory multiprocessor   or
Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
memory – since all processors see the same memory
organization  uniform memory access (UMA)

• Shared-memory because all processors can access the
entire memory address space

• Can centralized memory emerge as a bandwidth
bottleneck? – not if you have large caches and employ
fewer than a dozen processors
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SMPs or Centralized Shared-Memory

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System
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Memory Organization - II

• For higher scalability, memory is distributed among
processors  distributed memory multiprocessors

• If one processor can directly address the memory local
to another processor, the address space is shared 
distributed shared-memory (DSM) multiprocessor

• If memories are strictly local, we need messages to
communicate data  cluster of computers or multicomputers

• Non-uniform memory architecture (NUMA) since local
memory has lower latency than remote memory
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Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network
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SMPs

• Centralized main memory and many caches  many
copies of the same data

• A system is cache coherent if a read returns the most
recently written value for that word

Time       Event        Value of X in Cache-A        Cache-B         Memory
0                                                           - - 1
1       CPU-A reads X                           1                    - 1
2       CPU-B reads X                           1                    1                    1
3       CPU-A stores 0 in X                    0                   1                    0
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Cache Coherence

A memory system is coherent if:
• P writes to X; no other processor writes to X; P reads X
and receives the value previously written by P

• P1 writes to X; no other processor writes to X; sufficient
time elapses; P2 reads X and receives value written by P1

• Two writes to the same location by two processors are
seen in the same order by all processors – write serialization

• The memory consistency model defines “time elapsed”
before the effect of a processor is seen by others
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Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

Write-update: when a processor writes, it updates other
shared copies of that block
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Snooping-Based Protocols

• Three states for a block: invalid, shared, modified
• A write is placed on the bus and sharers invalidate themselves
• The protocols are referred to as MSI, MESI, etc.

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System
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Example

• P1 reads X: not found in cache-1, request sent on bus, memory responds,
X is placed in cache-1 in shared state

• P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1does nothing because this is just a read request,
memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

• P1 writes X: cache-1 has data in shared
state (shared only provides read perms),
request sent on bus, cache-2 snoops and
then invalidates its copy of X, cache-1
moves its state to modified

• P2 reads X: cache-2 has data in invalid
state, request sent on bus, cache-1 snoops
and realizes it has the only valid copy, so it
downgrades itself to shared state and
responds with data, X is placed in cache-2
in shared state, memory is also updated
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Example

Request Cache
Hit/Miss

Request
on the bus

Who responds State in 
Cache 1

State in 
Cache 2

State in 
Cache 3

State in 
Cache 4

Inv Inv Inv Inv

P1: Rd X Miss Rd X Memory S Inv Inv Inv

P2: Rd X Miss Rd X Memory S S Inv Inv

P2: Wr X Perms 
Miss

Upgrade X No response.
Other caches 

invalidate.

Inv M Inv Inv

P3: Wr X Write 
Miss

Wr X P2 responds Inv Inv M Inv

P3: Rd X Read Hit - - Inv Inv M Inv

P4: Rd X Read 
Miss

Rd X P3 responds. 
Mem wrtbk

Inv Inv S S
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Title

• Bullet
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