Lecture 18: Pipelining

e Today’s topics:

= Hazards and instruction scheduling
= Branch prediction
= Qut-of-order execution

Problem 1

SEEra | | ||
oosece [

Problem 2

U [

lw $1, 8(%$2)

Problem 3

o snos [

lw $1, 8(%$2)

Problem 4

A 7 or 9 stage pipeline

lw $1, 8(%$2)

add $4, 91, $3

Problem 4

Without bypassing: 4 stalls
IF:IF:DE:DE:RR:AL:DM:DM:RW
IF: IF :DE:DE:DE:DE:DE :DE:RR:AL:RW

With bypassing: 2 stalls
IF:IF:DE:DE:RR:AL:DM:DM:RW
IF: IF :DE:DE:DE:DE:RR :AL:RW

$1, 8(%$2)

lw
SO Y L e
]

Control Hazards

« Simple techniques to handle control hazard stalls:

» for every branch, introduce a stall cycle (note: every
6" instruction is a branch!)

» assume the branch is not taken and start fetching the
next instruction — if the branch is taken, need hardware
to cancel the effect of the wrong-path instruction

» fetch the next instruction (branch delay slot) and
execute it anyway — if the instruction turns out to be
on the correct path, useful work was done — if the
Instruction turns out to be on the wrong path,
hopefully program state is not lost

» make a smarter guess and fetch instructions from the

expected target :

Branch Delay Slots

a. From before b. From target
add $s1, $s2, $s3 sub $t4, $t5, $t6 =
if $s2 = 0 then ——
Delay slot add $s1, $s2, $s3
if $s1 = 0 then —
= Delay slot
Becomes Becomes
r Y
e
if $s2 = 0 then ——

dd $s1, $s2, $s3
add 351, $52. $53 add $s1, $s2, Is

if $s1 = 0 then —

I

sub $t4, $t5, $t6

Source: H&P textbook

Pipeline without Branch Predictor

Pipeline with Branch Predictor

Branch
Predictor

10

Bimodal Predictor

14 bits

11

2-Bit Prediction

e For each branch, maintain a 2-bit saturating counter:
If the branch is taken: counter = min(3,counter+1)
If the branch is not taken: counter = max(0,counter-1)
... sound familiar?

e If (counter >= 2), predict taken, else predict not taken

e The counter attempts to capture the common case for
each branch

12

Slowdowns from Stalls

 Perfect pipelining with no hazards - an instruction
completes every cycle (total cycles ~ num instructions)
-> speedup = increase In clock speed = num pipeline stages

* With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
Instruction completes

e Total cycles = number of instructions + stall cycles

13

Multicycle Instructions

inieger unk

i
- b

FRSintage muligly

T

2 3HA Elsawiar Boienos (LIEA}. Ml ights rescrsed.

* Multiple parallel pipelines — each pipeline can have a different
number of stages

* Instructions can now complete out of order — must make sure
that writes to a register happen in the correct order

14

An Out-of-Order Processor Implementation

Reorder Buffer (ROB)

|

—’-1--

Results written to
ROB and tags
broadcast to 1Q

Instr Fetch Queue

Issue Queue (IQ)
15

Example Code

Completion times

ADD R1, R2, R3
ADD R4, R1, R2
LW R5, 8(R4)
ADD R7, R6, R5
ADD RS, R7, R5
LW R, 16(R4)
ADD R10, R6, R9
ADD R11, R10, RO

with in-order

S

6

7

9
10
11

13
14

with 000

O ~NBoqyowum

16

Grading Guidelines

 Final grades will be based on class rank after totaling
scores on HW (30%), midterm (30%), and final (40%)

Class rank Grade Midterm score
30 A 94
50 A- 90

Since overall performance in

gg S+ g; this midterm was pretty good
93 B- 80 /

101 C+ 77 (potentially B-)

115 C 73 (potentially C+)

125 C- 69 (potentially C)

129 D+, D, D- 66 (potentially C-)

133 E 39

No Show EU
17

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

