
1

Lecture 12: Adders, Sequential Circuits

• Today’s topics:

 Carry-lookahead adder
 Clocks, latches, sequential circuits

Incorporating beq

• Perform a – b and
confirm that the
result is all zero’s

2
Source: H&P textbook

3

Control Lines

What are the values
of the control lines

and what operations
do they correspond to?

Source: H&P textbook

4

Control Lines

What are the values
of the control lines

and what operations
do they correspond to?

Ai Bn Op
AND 0 0 00
OR 0 0 01
Add 0 0 10
Sub 0 1 10
SLT 0 1 11
NOR 1 1 00

Source: H&P textbook

5

Speed of Ripple Carry

• The carry propagates thru every 1-bit box: each 1-bit box sequentially
implements AND and OR – total delay is the time to go through 64 gates!

• We’ve already seen that any logic equation can be expressed as the
sum of products – so it should be possible to compute the result by
going through only 2 gates!

• Caveat: need many parallel gates and each gate may have a very
large number of inputs – it is difficult to efficiently build such large
gates, so we’ll find a compromise:
 moderate number of gates
 moderate number of inputs to each gate
 moderate number of sequential gates traversed

6

Computing CarryOut

CarryIn1 = b0.CarryIn0 + a0.CarryIn0 + a0.b0
CarryIn2 = b1.CarryIn1 + a1.CarryIn1 + a1.b1

= b1.b0.c0 + b1.a0.c0 + b1.a0.b0 +
a1.b0.c0 + a1.a0.c0 + a1.a0.b0 + a1.b1

…
CarryIn32 = a really large sum of really large products

• Potentially fast implementation as the result is computed
by going thru just 2 levels of logic – unfortunately, each
gate is enormous and slow

7

Generate and Propagate

Equation re-phrased:
Ci+1 = ai.bi + ai.Ci + bi.Ci

= (ai.bi) + (ai + bi).Ci

Stated verbally, the current pair of bits will generate a carry
if they are both 1 and the current pair of bits will propagate
a carry if either is 1

Generate signal = ai.bi
Propagate signal = ai + bi

Therefore, Ci+1 = Gi + Pi . Ci

8

Generate and Propagate

c1 = g0 + p0.c0
c2 = g1 + p1.c1

= g1 + p1.g0 + p1.p0.c0
c3 = g2 + p2.g1 + p2.p1.g0 + p2.p1.p0.c0
c4 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0.c0

Either,
a carry was just generated, or
a carry was generated in the last step and was propagated, or
a carry was generated two steps back and was propagated by both

the next two stages, or
a carry was generated N steps back and was propagated by every

single one of the N next stages

9

Divide and Conquer

• The equations on the previous slide are still difficult to implement as
logic functions – for the 32nd bit, we must AND every single propagate
bit to determine what becomes of c0 (among other things)

• Hence, the bits are broken into groups (of 4) and each group
computes its group-generate and group-propagate

• For example, to add 32 numbers, you can partition the task as a tree

.
. . . .

.

10

P and G for 4-bit Blocks

• Compute P0 and G0 (super-propagate and super-generate) for the
first group of 4 bits (and similarly for other groups of 4 bits)
P0 = p0.p1.p2.p3
G0 = g3 + g2.p3 + g1.p2.p3 + g0.p1.p2.p3

• Carry out of the first group of 4 bits is
C1 = G0 + P0.c0
C2 = G1 + P1.G0 + P1.P0.c0
C3 = G2 + (P2.G1) + (P2.P1.G0) + (P2.P1.P0.c0)
C4 = G3 + (P3.G2) + (P3.P2.G1) + (P3.P2.P1.G0) + (P3.P2.P1.P0.c0)

• By having a tree of sub-computations, each AND, OR gate has few
inputs and logic signals have to travel through a modest set of
gates (equal to the height of the tree)

11

Example

Add A 0001 1010 0011 0011
B 1110 0101 1110 1011
g 0000 0000 0010 0011
p 1111 1111 1111 1011

P 1 1 1 0
G 0 0 1 0

C4 = 1

12

Carry Look-Ahead Adder

• 16-bit Ripple-carry
takes 32 steps

• This design takes
how many steps?

Source: H&P textbook

13

Clocks

• A microprocessor is composed of many different circuits
that are operating simultaneously – if each circuit X takes in
inputs at time TIX, takes time TEX to execute the logic,
and produces outputs at time TOX, imagine the
complications in co-ordinating the tasks of every circuit

• A major school of thought (used in most processors built
today): all circuits on the chip share a clock signal (a
square wave) that tells every circuit when to accept
inputs, how much time they have to execute the logic, and
when they must produce outputs

14

Clock Terminology

Cycle time

Rising clock edge

Falling clock edge

4 GHz = clock speed = 1 = 1 .
cycle time 250 ps

15

Sequential Circuits

• Until now, circuits were combinational – when inputs change, the
outputs change after a while (time = logic delay thru circuit)

Combinational
CircuitInputs Outputs

• We want the clock to act like a start and stop signal – a “latch” is
a storage device that separates these circuits – it ensures that
the inputs to the circuit do not change during a clock cycle

Combinational
Circuit

Outputs

Combinational
Circuit

Combinational
Circuit

Latch Latch

Inputs

Clock Clock

16

Sequential Circuits

• Sequential circuit: consists
of combinational circuit and
a storage element

• At the start of the clock
cycle, the rising edge
causes the “state” storage
to store some input values

• This state will not change for an entire cycle (until next rising edge)

• The combinational circuit has some time to accept the value
of “state” and “inputs” and produce “outputs”

• Some of the outputs (for example, the value of next “state”) may feed
back (but through the latch so they’re only seen in the next cycle)

State

Combinational Cct

Clock
Inputs Outputs

Inputs

17

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

