
1

Lecture 9: Floating Point

• Today’s topics:

 Division
 IEEE 754 representations

2

Divide Example

• Divide 7ten (0000 0111two) by 2ten (0010two)

Iter Step Quot Divisor Remainder
0 Initial values 0000 0010 0000 0000 0111
1 Rem = Rem – Div

Rem < 0 +Div, shift 0 into Q
Shift Div right

0000
0000
0000

0010 0000
0010 0000
0001 0000

1110 0111
0000 0111
0000 0111

2 Same steps as 1 0000
0000
0000

0001 0000
0001 0000
0000 1000

1111 0111
0000 0111
0000 0111

3 Same steps as 1 0000 0000 0100 0000 0111
4 Rem = Rem – Div

Rem >= 0 shift 1 into Q
Shift Div right

0000
0001
0001

0000 0100
0000 0100
0000 0010

0000 0011
0000 0011
0000 0011

5 Same steps as 4 0011 0000 0001 0000 0001

3

Hardware for Division

A comparison requires a subtract; the sign of the result is
examined; if the result is negative, the divisor must be added back

Similar to multiply, results are placed in Hi (remainder) and Lo (quotient)

Source: H&P textbook

4

Efficient Division

Source: H&P textbook

5

Divisions involving Negatives

• Simplest solution: convert to positive and adjust sign later

• Note that multiple solutions exist for the equation:
Dividend = Quotient x Divisor + Remainder

+7 div +2 Quo = Rem =
-7 div +2 Quo = Rem =
+7 div -2 Quo = Rem =
-7 div -2 Quo = Rem =

6

Divisions involving Negatives

• Simplest solution: convert to positive and adjust sign later

• Note that multiple solutions exist for the equation:
Dividend = Quotient x Divisor + Remainder

+7 div +2 Quo = +3 Rem = +1
-7 div +2 Quo = -3 Rem = -1
+7 div -2 Quo = -3 Rem = +1
-7 div -2 Quo = +3 Rem = -1

Convention: Dividend and remainder have the same sign
Quotient is negative if signs disagree
These rules fulfil the equation above

7

Floating Point

• Normalized scientific notation: single non-zero digit to the
left of the decimal (binary) point – example: 3.5 x 109

• 1.010001 x 2-5
two = (1 + 0 x 2-1 + 1 x 2-2 + … + 1 x 2-6) x 2-5

ten

• A standard notation enables easy exchange of data between
machines and simplifies hardware algorithms – the
IEEE 754 standard defines how floating point numbers
are represented

8

Sign and Magnitude Representation

Sign Exponent Fraction
1 bit 8 bits 23 bits
S E F

• More exponent bits wider range of numbers (not necessarily more
numbers – recall there are infinite real numbers)

• More fraction bits higher precision

• Register value = (-1)S x F x 2E

• Since we are only representing normalized numbers, we are
guaranteed that the number is of the form 1.xxxx..
Hence, in IEEE 754 standard, the 1 is implicit
Register value = (-1)S x (1 + F) x 2E

9

Sign and Magnitude Representation

Sign Exponent Fraction
1 bit 8 bits 23 bits
S E F

• Largest number that can be represented:

• Smallest number that can be represented:

10

Sign and Magnitude Representation

Sign Exponent Fraction
1 bit 8 bits 23 bits
S E F

• Largest number that can be represented: 2.0 x 2128 = 2.0 x 1038

• Smallest number that can be represented: 1.0 x 2-127 = 2.0 x 10-38

• Overflow: when representing a number larger than the one above;
Underflow: when representing a number smaller than the one above

• Double precision format: occupies two 32-bit registers:
Largest: Smallest:

Sign Exponent Fraction
1 bit 11 bits 52 bits
S E F

11

Details

• The number “0” has a special code so that the implicit 1 does not
get added: the code is all 0s
(it may seem that this takes up the representation for 1.0, but
given how the exponent is represented, we’ll soon see that
that’s not the case)

(see discussion of denorms (pg. 222) in the textbook)

• The largest exponent value (with zero fraction) represents +/- infinity

• The largest exponent value (with non-zero fraction) represents
NaN (not a number) – for the result of 0/0 or (infinity minus infinity)

• Note that these choices impact the smallest and largest numbers
that can be represented

12

Exponent Representation

• To simplify sort, sign was placed as the first bit

• For a similar reason, the representation of the exponent is also
modified: in order to use integer compares, it would be preferable to
have the smallest exponent as 00…0 and the largest exponent as 11…1

• This is the biased notation, where a bias is subtracted from the
exponent field to yield the true exponent

• IEEE 754 single-precision uses a bias of 127 (since the exponent
must have values between -127 and 128)…double precision uses
a bias of 1023

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

13

Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent -0.75ten in single and double-precision formats

Single: (1 + 8 + 23)

Double: (1 + 11 + 52)

• What decimal number is represented by the following
single-precision number?
1 1000 0001 01000…0000

14

Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent -0.75ten in single and double-precision formats

Single: (1 + 8 + 23)
1 0111 1110 1000…000

Double: (1 + 11 + 52)
1 0111 1111 110 1000…000

• What decimal number is represented by the following
single-precision number?
1 1000 0001 01000…0000

-5.0

15

FP Addition

• Consider the following decimal example (can maintain
only 4 decimal digits and 2 exponent digits)

9.999 x 101 + 1.610 x 10-1

Convert to the larger exponent:
9.999 x 101 + 0.016 x 101

Add
10.015 x 101

Normalize
1.0015 x 102

Check for overflow/underflow
Round
1.002 x 102

Re-normalize

16

FP Addition

• Consider the following decimal example (can maintain
only 4 decimal digits and 2 exponent digits)

9.999 x 101 + 1.610 x 10-1

Convert to the larger exponent:
9.999 x 101 + 0.016 x 101

Add
10.015 x 101

Normalize
1.0015 x 102

Check for overflow/underflow
Round
1.002 x 102

Re-normalize

If we had more fraction bits,
these errors would be minimized

17

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

