
1

Lecture 8: Addition, Multiplication & Division

• Today’s topics:

 Signed/Unsigned
 Addition
 Multiplication
 Division

2

Signed / Unsigned

• The hardware recognizes two formats:

unsigned (corresponding to the C declaration unsigned int)
-- all numbers are positive, a 1 in the most significant bit

just means it is a really large number

signed (C declaration is signed int or just int)
-- numbers can be +/- , a 1 in the MSB means the number

is negative

This distinction enables us to represent twice as many
numbers when we’re sure that we don’t need negatives

3

MIPS Instructions

Consider a comparison instruction:
slt $t0, $t1, $zero

and $t1 contains the 32-bit number 1111 01…01

What gets stored in $t0?

4

MIPS Instructions

Consider a comparison instruction:
slt $t0, $t1, $zero

and $t1 contains the 32-bit number 1111 01…01

What gets stored in $t0?
The result depends on whether $t1 is a signed or unsigned
number – the compiler/programmer must track this and
accordingly use either slt or sltu

slt $t0, $t1, $zero stores 1 in $t0
sltu $t0, $t1, $zero stores 0 in $t0

5

Sign Extension

• Occasionally, 16-bit signed numbers must be converted
into 32-bit signed numbers – for example, when doing an
add with an immediate operand

• The conversion is simple: take the most significant bit and
use it to fill up the additional bits on the left – known as
sign extension

So 210 goes from 0000 0000 0000 0010 to
0000 0000 0000 0000 0000 0000 0000 0010

and -210 goes from 1111 1111 1111 1110 to
1111 1111 1111 1111 1111 1111 1111 1110

6

Alternative Representations

• The following two (intuitive) representations were discarded
because they required additional conversion steps before
arithmetic could be performed on the numbers

 sign-and-magnitude: the most significant bit represents
+/- and the remaining bits express the magnitude

 one’s complement: -x is represented by inverting all
the bits of x

Both representations above suffer from two zeroes

7

Addition and Subtraction

• Addition is similar to decimal arithmetic

• For subtraction, simply add the negative number – hence,
subtract A-B involves negating B’s bits, adding 1 and A

Source: H&P textbook

8

Overflows

• For an unsigned number, overflow happens when the last carry (1)
cannot be accommodated

• For a signed number, overflow happens when the most significant bit
is not the same as every bit to its left
 when the sum of two positive numbers is a negative result
 when the sum of two negative numbers is a positive result
 The sum of a positive and negative number will never overflow

• MIPS allows addu and subu instructions that work with unsigned
integers and never flag an overflow – to detect the overflow, other
instructions will have to be executed

9

Multiplication Example

Multiplicand 1000ten
Multiplier x 1001ten

1000

0000
0000

1000

Product 1001000ten

In every step
• multiplicand is shifted
• next bit of multiplier is examined (also a shifting step)
• if this bit is 1, shifted multiplicand is added to the product

10

HW Algorithm 1

In every step
• multiplicand is shifted
• next bit of multiplier is examined (also a shifting step)
• if this bit is 1, shifted multiplicand is added to the product

Source: H&P textbook

11

HW Algorithm 2

• 32-bit ALU and multiplicand is untouched
• the sum keeps shifting right
• at every step, number of bits in product + multiplier = 64,

hence, they share a single 64-bit register

Source: H&P textbook

12

Notes

• The previous algorithm also works for signed numbers
(negative numbers in 2’s complement form)

• We can also convert negative numbers to positive, multiply
the magnitudes, and convert to negative if signs disagree

• The product of two 32-bit numbers can be a 64-bit number
-- hence, in MIPS, the product is saved in two 32-bit

registers

13

MIPS Instructions

mult $s2, $s3 computes the product and stores
it in two “internal” registers that
can be referred to as hi and lo

mfhi $s0 moves the value in hi into $s0
mflo $s1 moves the value in lo into $s1

Similarly for multu

14

Fast Algorithm

• The previous algorithm
requires a clock to ensure that
the earlier addition has
completed before shifting

• This algorithm can quickly set
up most inputs – it then has to
wait for the result of each add
to propagate down – faster
because no clock is involved

-- Note: high transistor cost

Source: H&P textbook

15

Division

1001ten Quotient
Divisor 1000ten | 1001010ten Dividend

-1000
10
101
1010
-1000

10ten Remainder

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient

16

Division

1001ten Quotient
Divisor 1000ten | 1001010ten Dividend

0001001010 0001001010 0000001010 0000001010
100000000000  0001000000 00001000000000001000
Quo: 0 000001 0000010 000001001

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient

17

Divide Example

• Divide 7ten (0000 0111two) by 2ten (0010two)

Iter Step Quot Divisor Remainder
0 Initial values
1

2

3

4

5

18

Divide Example

• Divide 7ten (0000 0111two) by 2ten (0010two)

Iter Step Quot Divisor Remainder
0 Initial values 0000 0010 0000 0000 0111
1 Rem = Rem – Div

Rem < 0  +Div, shift 0 into Q
Shift Div right

0000
0000
0000

0010 0000
0010 0000
0001 0000

1110 0111
0000 0111
0000 0111

2 Same steps as 1 0000
0000
0000

0001 0000
0001 0000
0000 1000

1111 0111
0000 0111
0000 0111

3 Same steps as 1 0000 0000 0100 0000 0111
4 Rem = Rem – Div

Rem >= 0  shift 1 into Q
Shift Div right

0000
0001
0001

0000 0100
0000 0100
0000 0010

0000 0011
0000 0011
0000 0011

5 Same steps as 4 0011 0000 0001 0000 0001

19

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

