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Lecture 7: MARS, Computer Arithmetic

• Today’s topics: 

 MARS intro
 Numerical representations
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Full Example – Sort in C (pg. 133)

• Allocate registers to program variables
• Produce code for the program body
• Preserve registers across procedure invocations

void sort (int v[], int n)
{

int i, j;
for (i=0; i<n; i+=1) {

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
swap (v,j);

}
}

}

void swap (int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}
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The swap Procedure

• Register allocation: $a0 and $a1 for the two arguments, $t0 for the
temp variable – no need for saves and restores as we’re not using
$s0-$s7 and this is a leaf procedure (won’t need to re-use $a0 and $a1)

swap:    sll     $t1, $a1, 2
add   $t1, $a0, $t1 
lw     $t0, 0($t1)    
lw     $t2, 4($t1)    

sw     $t2, 0($t1)   
sw     $t0, 4($t1)
jr      $ra

void swap (int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}
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The sort Procedure

• Register allocation: arguments v and n use $a0 and $a1, i and j use
$s0 and $s1; must save $a0 and $a1 before calling the leaf
procedure

• The outer for loop looks like this: (note the use of pseudo-instrs)

move   $s0, $zero            # initialize the loop
loopbody1: bge $s0, $a1, exit1     # will eventually use slt and beq

… body of inner loop …
addi $s0, $s0, 1
j            loopbody1

exit1: 
for (i=0; i<n; i+=1) {

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
swap (v,j);

}
}
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The sort Procedure

• The inner for loop looks like this:

addi     $s1, $s0, -1          # initialize the loop
loopbody2: blt        $s1, $zero, exit2   # will eventually use slt and beq

sll        $t1,  $s1, 2
add      $t2, $a0, $t1
lw        $t3, 0($t2)
lw        $t4, 4($t2)
bgt       $t3, $t4, exit2
… body of inner loop …
addi     $s1, $s1, -1
j            loopbody2

exit2: for (i=0; i<n; i+=1) {
for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {

swap (v,j);
}

}
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Saves and Restores

• Since we repeatedly call “swap” with $a0 and $a1, we begin “sort” by
copying its arguments into $s2 and $s3 – must update the rest of the
code in “sort” to use $s2 and $s3 instead of $a0 and $a1

• Must save $ra at the start of “sort” because it will get over-written when
we call “swap”

• Must also save $s0-$s3 so we don’t overwrite something that belongs
to the procedure that called “sort”
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Saves and Restores

sort:    addi     $sp, $sp, -20
sw       $ra, 16($sp)
sw       $s3, 12($sp)
sw       $s2, 8($sp)
sw       $s1, 4($sp)
sw       $s0, 0($sp)
move    $s2, $a0
move    $s3, $a1
…

move    $a0, $s2        # the inner loop body starts here
move    $a1, $s1
jal         swap
…

exit1:  lw         $s0, 0($sp)
…

addi       $sp, $sp, 20
jr            $ra

9 lines of C code  35 lines of assembly
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MARS

• MARS is a simulator that reads in an assembly program
and models its behavior on a MIPS processor

• Note that a “MIPS add instruction” will eventually be
converted to an add instruction for the host computer’s
architecture – this translation happens under the hood

• To simplify the programmer’s task, it accepts
pseudo-instructions, large constants, constants in 
decimal/hex formats, labels, etc.

• The simulator allows us to inspect register/memory
values to confirm that our program is behaving correctly
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MARS Intro

• Directives, labels, global pointers, system calls
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Example Print Routine

.data
str:     .asciiz   “the answer is ”

.text
li      $v0, 4               # load immediate; 4 is the code for print_string
la     $a0, str            #  the print_string syscall expects the string

#  address as the argument; la is the instruction
#  to load the address of the operand (str)

syscall                     #  SPIM will now invoke syscall-4
li      $v0, 1              #  syscall-1 corresponds to print_int
li      $a0, 5              #  print_int expects the integer as its argument
syscall                     #  SPIM will now invoke syscall-1
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Example

• Write an assembly program to prompt the user for two numbers and
print the sum of the two numbers



12

Example
.data

str1:  .asciiz “Enter 2 numbers:”
.text                                                     str2:  .asciiz “The sum is ”

li   $v0, 4
la  $a0, str1
syscall
li   $v0, 5
syscall
add  $t0, $v0, $zero
li   $v0, 5
syscall
add  $t1, $v0, $zero           
li   $v0, 4       
la  $a0, str2         
syscall
li    $v0, 1
add  $a0, $t1, $t0
syscall
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IA-32 Instruction Set

• Intel’s IA-32 instruction set has evolved over 20 years –
old features are preserved for software compatibility

• Numerous complex instructions – complicates hardware
design (Complex Instruction Set Computer – CISC)

• Instructions have different sizes, operands can be in
registers or memory, only 8 general-purpose registers,
one of the operands is over-written

• RISC instructions are more amenable to high performance
(clock speed and parallelism) – modern Intel processors
convert IA-32 instructions into simpler micro-operations
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Endian-ness

Two major formats for transferring values between registers and memory

Memory:  low address  45   7b  87  7f    high address

Little-endian register: the first byte read goes in the low end of the register
Register:   7f   87  7b  45

Most-significant bit                        Least-significant bit                 (x86)

Big-endian register: the first byte read goes in the big end of the register
Register:   45  7b  87  7f

Most-significant bit                         Least-significant bit               (MIPS, IBM)
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Binary Representation

• The binary number  

01011000 00010101 00101110 11100111

represents the quantity
0 x 231 + 1 x 230 + 0 x 229 + …  + 1 x 20

• A 32-bit word can represent  232 numbers between
0  and  232-1

… this is known as the unsigned representation as
we’re assuming that numbers are always positive

Most significant bit Least significant bit
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ASCII  Vs.  Binary

• Does it make more sense to represent a decimal number
in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it
take to represent the decimal number 1,000,000,000 in
ASCII and in binary?
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ASCII  Vs.  Binary

• Does it make more sense to represent a decimal number
in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it
take to represent the decimal number 1,000,000,000 in
ASCII and in binary?

In binary: 30 bits     (230 > 1 billion)
In ASCII: 10 characters, 8 bits per char  = 80 bits
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Negative Numbers

32 bits can only represent 232 numbers – if we wish to also represent
negative numbers, we can represent 231 positive numbers (incl zero)
and 231 negative numbers

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1
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2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)   
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Why is this representation favorable?
Consider the sum of  1 and -2  …. we get  -1
Consider the sum of  2 and -1  …. we get +1

This format can directly undergo addition without any conversions!

Each number represents the quantity
x31 -231 +  x30 230 + x29 229 + … + x1 21 + x0 20



20

2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)   
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Note that the sum of a number x and its inverted representation x’ always
equals  a string of 1s (-1).

x + x’ = -1
x’ + 1 = -x        … hence, can compute the negative of a number by
-x = x’ + 1             inverting all bits and adding 1

Similarly, the sum of  x and –x gives us all zeroes, with a carry of 1
In reality, x + (-x) = 2n … hence the name 2’s complement
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Example

• Compute the 32-bit 2’s complement representations
for the following decimal numbers:

5,  -5, -6 
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Example

• Compute the 32-bit 2’s complement representations
for the following decimal numbers:

5,  -5, -6 

5:   0000 0000 0000 0000 0000 0000 0000 0101
-5:   1111  1111  1111  1111  1111  1111  1111 1011
-6:   1111  1111  1111  1111  1111  1111  1111 1010

Given -5, verify that negating and adding 1 yields the
number 5
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Signed / Unsigned

• The hardware recognizes two formats:

unsigned (corresponding to the C declaration  unsigned int)
-- all numbers are positive, a 1 in the most significant bit

just means it is a really large number

signed (C declaration is  signed int or just  int)
-- numbers can be +/- , a 1 in the MSB means the number

is negative

This distinction enables us to represent twice as many
numbers when we’re sure that we don’t need negatives
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MIPS Instructions

Consider a comparison instruction:
slt   $t0, $t1, $zero

and $t1 contains the 32-bit number   1111 01…01

What gets stored in $t0?
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MIPS Instructions

Consider a comparison instruction:
slt   $t0, $t1, $zero

and $t1 contains the 32-bit number   1111 01…01

What gets stored in $t0?
The result depends on whether $t1 is a signed or unsigned
number – the compiler/programmer must track this and
accordingly use either slt or  sltu

slt    $t0, $t1, $zero     stores  1 in $t0
sltu  $t0, $t1, $zero     stores  0 in $t0
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Sign Extension

• Occasionally, 16-bit signed numbers must be converted
into 32-bit signed numbers – for example, when doing an
add with an immediate operand

• The conversion is simple: take the most significant bit and
use it to fill up the additional bits on the left – known as
sign extension

So 210 goes from  0000 0000 0000 0010   to
0000 0000 0000 0000 0000 0000 0000 0010

and -210 goes from 1111 1111 1111 1110   to
1111 1111 1111 1111 1111 1111 1111 1110
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Alternative Representations

• The following two (intuitive) representations were discarded
because they required additional conversion steps before
arithmetic could be performed on the numbers

 sign-and-magnitude: the most significant bit represents
+/- and the remaining bits express the magnitude

 one’s complement: -x is represented by inverting all
the bits of x

Both representations above suffer from two zeroes
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Title

• Bullet
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