
1

Lecture 7: MARS, Computer Arithmetic

• Today’s topics:

 MARS intro
 Numerical representations

2

Full Example – Sort in C (pg. 133)

• Allocate registers to program variables
• Produce code for the program body
• Preserve registers across procedure invocations

void sort (int v[], int n)
{

int i, j;
for (i=0; i<n; i+=1) {

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
swap (v,j);

}
}

}

void swap (int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

3

The swap Procedure

• Register allocation: $a0 and $a1 for the two arguments, $t0 for the
temp variable – no need for saves and restores as we’re not using
$s0-$s7 and this is a leaf procedure (won’t need to re-use $a0 and $a1)

swap: sll $t1, $a1, 2
add $t1, $a0, $t1
lw $t0, 0($t1)
lw $t2, 4($t1)

sw $t2, 0($t1)
sw $t0, 4($t1)
jr $ra

void swap (int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

4

The sort Procedure

• Register allocation: arguments v and n use $a0 and $a1, i and j use
$s0 and $s1; must save $a0 and $a1 before calling the leaf
procedure

• The outer for loop looks like this: (note the use of pseudo-instrs)

move $s0, $zero # initialize the loop
loopbody1: bge $s0, $a1, exit1 # will eventually use slt and beq

… body of inner loop …
addi $s0, $s0, 1
j loopbody1

exit1:
for (i=0; i<n; i+=1) {

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
swap (v,j);

}
}

5

The sort Procedure

• The inner for loop looks like this:

addi $s1, $s0, -1 # initialize the loop
loopbody2: blt $s1, $zero, exit2 # will eventually use slt and beq

sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
bgt $t3, $t4, exit2
… body of inner loop …
addi $s1, $s1, -1
j loopbody2

exit2: for (i=0; i<n; i+=1) {
for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {

swap (v,j);
}

}

6

Saves and Restores

• Since we repeatedly call “swap” with $a0 and $a1, we begin “sort” by
copying its arguments into $s2 and $s3 – must update the rest of the
code in “sort” to use $s2 and $s3 instead of $a0 and $a1

• Must save $ra at the start of “sort” because it will get over-written when
we call “swap”

• Must also save $s0-$s3 so we don’t overwrite something that belongs
to the procedure that called “sort”

7

Saves and Restores

sort: addi $sp, $sp, -20
sw $ra, 16($sp)
sw $s3, 12($sp)
sw $s2, 8($sp)
sw $s1, 4($sp)
sw $s0, 0($sp)
move $s2, $a0
move $s3, $a1
…

move $a0, $s2 # the inner loop body starts here
move $a1, $s1
jal swap
…

exit1: lw $s0, 0($sp)
…

addi $sp, $sp, 20
jr $ra

9 lines of C code  35 lines of assembly

8

MARS

• MARS is a simulator that reads in an assembly program
and models its behavior on a MIPS processor

• Note that a “MIPS add instruction” will eventually be
converted to an add instruction for the host computer’s
architecture – this translation happens under the hood

• To simplify the programmer’s task, it accepts
pseudo-instructions, large constants, constants in
decimal/hex formats, labels, etc.

• The simulator allows us to inspect register/memory
values to confirm that our program is behaving correctly

9

MARS Intro

• Directives, labels, global pointers, system calls

10

Example Print Routine

.data
str: .asciiz “the answer is ”

.text
li $v0, 4 # load immediate; 4 is the code for print_string
la $a0, str # the print_string syscall expects the string

address as the argument; la is the instruction
to load the address of the operand (str)

syscall # SPIM will now invoke syscall-4
li $v0, 1 # syscall-1 corresponds to print_int
li $a0, 5 # print_int expects the integer as its argument
syscall # SPIM will now invoke syscall-1

11

Example

• Write an assembly program to prompt the user for two numbers and
print the sum of the two numbers

12

Example
.data

str1: .asciiz “Enter 2 numbers:”
.text str2: .asciiz “The sum is ”

li $v0, 4
la $a0, str1
syscall
li $v0, 5
syscall
add $t0, $v0, $zero
li $v0, 5
syscall
add $t1, $v0, $zero
li $v0, 4
la $a0, str2
syscall
li $v0, 1
add $a0, $t1, $t0
syscall

13

IA-32 Instruction Set

• Intel’s IA-32 instruction set has evolved over 20 years –
old features are preserved for software compatibility

• Numerous complex instructions – complicates hardware
design (Complex Instruction Set Computer – CISC)

• Instructions have different sizes, operands can be in
registers or memory, only 8 general-purpose registers,
one of the operands is over-written

• RISC instructions are more amenable to high performance
(clock speed and parallelism) – modern Intel processors
convert IA-32 instructions into simpler micro-operations

14

Endian-ness

Two major formats for transferring values between registers and memory

Memory: low address 45 7b 87 7f high address

Little-endian register: the first byte read goes in the low end of the register
Register: 7f 87 7b 45

Most-significant bit Least-significant bit (x86)

Big-endian register: the first byte read goes in the big end of the register
Register: 45 7b 87 7f

Most-significant bit Least-significant bit (MIPS, IBM)

15

Binary Representation

• The binary number

01011000 00010101 00101110 11100111

represents the quantity
0 x 231 + 1 x 230 + 0 x 229 + … + 1 x 20

• A 32-bit word can represent 232 numbers between
0 and 232-1

… this is known as the unsigned representation as
we’re assuming that numbers are always positive

Most significant bit Least significant bit

16

ASCII Vs. Binary

• Does it make more sense to represent a decimal number
in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it
take to represent the decimal number 1,000,000,000 in
ASCII and in binary?

17

ASCII Vs. Binary

• Does it make more sense to represent a decimal number
in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it
take to represent the decimal number 1,000,000,000 in
ASCII and in binary?

In binary: 30 bits (230 > 1 billion)
In ASCII: 10 characters, 8 bits per char = 80 bits

18

Negative Numbers

32 bits can only represent 232 numbers – if we wish to also represent
negative numbers, we can represent 231 positive numbers (incl zero)
and 231 negative numbers

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

19

2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Why is this representation favorable?
Consider the sum of 1 and -2 …. we get -1
Consider the sum of 2 and -1 …. we get +1

This format can directly undergo addition without any conversions!

Each number represents the quantity
x31 -231 + x30 230 + x29 229 + … + x1 21 + x0 20

20

2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Note that the sum of a number x and its inverted representation x’ always
equals a string of 1s (-1).

x + x’ = -1
x’ + 1 = -x … hence, can compute the negative of a number by
-x = x’ + 1 inverting all bits and adding 1

Similarly, the sum of x and –x gives us all zeroes, with a carry of 1
In reality, x + (-x) = 2n … hence the name 2’s complement

21

Example

• Compute the 32-bit 2’s complement representations
for the following decimal numbers:

5, -5, -6

22

Example

• Compute the 32-bit 2’s complement representations
for the following decimal numbers:

5, -5, -6

5: 0000 0000 0000 0000 0000 0000 0000 0101
-5: 1111 1111 1111 1111 1111 1111 1111 1011
-6: 1111 1111 1111 1111 1111 1111 1111 1010

Given -5, verify that negating and adding 1 yields the
number 5

23

Signed / Unsigned

• The hardware recognizes two formats:

unsigned (corresponding to the C declaration unsigned int)
-- all numbers are positive, a 1 in the most significant bit

just means it is a really large number

signed (C declaration is signed int or just int)
-- numbers can be +/- , a 1 in the MSB means the number

is negative

This distinction enables us to represent twice as many
numbers when we’re sure that we don’t need negatives

24

MIPS Instructions

Consider a comparison instruction:
slt $t0, $t1, $zero

and $t1 contains the 32-bit number 1111 01…01

What gets stored in $t0?

25

MIPS Instructions

Consider a comparison instruction:
slt $t0, $t1, $zero

and $t1 contains the 32-bit number 1111 01…01

What gets stored in $t0?
The result depends on whether $t1 is a signed or unsigned
number – the compiler/programmer must track this and
accordingly use either slt or sltu

slt $t0, $t1, $zero stores 1 in $t0
sltu $t0, $t1, $zero stores 0 in $t0

26

Sign Extension

• Occasionally, 16-bit signed numbers must be converted
into 32-bit signed numbers – for example, when doing an
add with an immediate operand

• The conversion is simple: take the most significant bit and
use it to fill up the additional bits on the left – known as
sign extension

So 210 goes from 0000 0000 0000 0010 to
0000 0000 0000 0000 0000 0000 0000 0010

and -210 goes from 1111 1111 1111 1110 to
1111 1111 1111 1111 1111 1111 1111 1110

27

Alternative Representations

• The following two (intuitive) representations were discarded
because they required additional conversion steps before
arithmetic could be performed on the numbers

 sign-and-magnitude: the most significant bit represents
+/- and the remaining bits express the magnitude

 one’s complement: -x is represented by inverting all
the bits of x

Both representations above suffer from two zeroes

28

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

