
1

Lecture 6: Assembly Programs

• Today’s topics:

 Examples
 Large constants
 The compilation process
 A full example

2

int fact (int n)
{

if (n < 1) return (1);
else return (n * fact(n-1));

}

fact:
slti $t0, $a0, 1
beq $t0, $zero, L1
addi $v0, $zero, 1
jr $ra

L1:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
addi $a0, $a0, -1
jal fact
lw $a0, 0($sp)
lw $ra, 4($sp)
addi $sp, $sp, 8
mul $v0, $a0, $v0
jr $ra

Notes:
The caller saves $a0 and $ra
in its stack space.
Temp register $t0 is never saved.

Example 2 (pg. 101)

3

Dealing with Characters

• Instructions are also provided to deal with byte-sized
and half-word quantities: lb (load-byte), sb, lh, sh

• These data types are most useful when dealing with
characters, pixel values, etc.

• C employs ASCII formats to represent characters – each
character is represented with 8 bits and a string ends in
the null character (corresponding to the 8-bit number 0)

4

Example 3 (pg. 108)

Convert to assembly:
void strcpy (char x[], char y[])
{

int i;
i=0;
while ((x[i] = y[i]) != `\0’)
i += 1;

}

strcpy:
addi $sp, $sp, -4
sw $s0, 0($sp)
add $s0, $zero, $zero
L1: add $t1, $s0, $a1
lb $t2, 0($t1)
add $t3, $s0, $a0
sb $t2, 0($t3)
beq $t2, $zero, L2
addi $s0, $s0, 1
j L1
L2: lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Notes:
Temp registers not saved.

5

Saving Conventions

• Caller saved: Temp registers $t0-$t9 (the callee won’t
bother saving these, so save them if you care), $ra (it’s
about to get over-written), $a0-$a3 (so you can put in
new arguments)

• Callee saved: $s0-$s7 (these typically contain “valuable”
data)

• Read the Notes on the class webpage on this topic

6

Large Constants

• Immediate instructions can only specify 16-bit constants

• The lui instruction is used to store a 16-bit constant into
the upper 16 bits of a register… combine this with an
OR instruction to specify a 32-bit constant

• The destination PC-address in a conditional branch is
specified as a 16-bit constant, relative to the current PC

• A jump (j) instruction can specify a 26-bit constant; if more
bits are required, the jump-register (jr) instruction is used

7

Starting a Program

C Program

Assembly language program

Object: machine language module Object: library routine (machine language)

Executable: machine language program

Memory

Compiler

Assembler

Linker

Loader

x.c

x.s

x.o x.a, x.so

a.out

8

Role of Assembler

• Convert pseudo-instructions into actual hardware
instructions – pseudo-instrs make it easier to program
in assembly – examples: “move”, “blt”, 32-bit immediate
operands, etc.

• Convert assembly instrs into machine instrs – a separate
object file (x.o) is created for each C file (x.c) – compute
the actual values for instruction labels – maintain info
on external references and debugging information

9

Role of Linker

• Stitches different object files into a single executable

 patch internal and external references
 determine addresses of data and instruction labels
 organize code and data modules in memory

• Some libraries (DLLs) are dynamically linked – the
executable points to dummy routines – these dummy
routines call the dynamic linker-loader so they can
update the executable to jump to the correct routine

10

Full Example – Sort in C (pg. 133)

• Allocate registers to program variables
• Produce code for the program body
• Preserve registers across procedure invocations

void sort (int v[], int n)
{

int i, j;
for (i=0; i<n; i+=1) {

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
swap (v,j);

}
}

}

void swap (int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

11

The swap Procedure

• Register allocation: $a0 and $a1 for the two arguments, $t0 for the
temp variable – no need for saves and restores as we’re not using
$s0-$s7 and this is a leaf procedure (won’t need to re-use $a0 and $a1)

swap: sll $t1, $a1, 2
add $t1, $a0, $t1
lw $t0, 0($t1)
lw $t2, 4($t1)

sw $t2, 0($t1)
sw $t0, 4($t1)
jr $ra

void swap (int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

12

The sort Procedure

• Register allocation: arguments v and n use $a0 and $a1, i and j use
$s0 and $s1; must save $a0 and $a1 before calling the leaf
procedure

• The outer for loop looks like this: (note the use of pseudo-instrs)

move $s0, $zero # initialize the loop
loopbody1: bge $s0, $a1, exit1 # will eventually use slt and beq

… body of inner loop …
addi $s0, $s0, 1
j loopbody1

exit1:
for (i=0; i<n; i+=1) {

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
swap (v,j);

}
}

13

The sort Procedure

• The inner for loop looks like this:

addi $s1, $s0, -1 # initialize the loop
loopbody2: blt $s1, $zero, exit2 # will eventually use slt and beq

sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
bgt $t3, $t4, exit2
… body of inner loop …
addi $s1, $s1, -1
j loopbody2

exit2: for (i=0; i<n; i+=1) {
for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {

swap (v,j);
}

}

14

Saves and Restores

• Since we repeatedly call “swap” with $a0 and $a1, we begin “sort” by
copying its arguments into $s2 and $s3 – must update the rest of the
code in “sort” to use $s2 and $s3 instead of $a0 and $a1

• Must save $ra at the start of “sort” because it will get over-written when
we call “swap”

• Must also save $s0-$s3 so we don’t overwrite something that belongs
to the procedure that called “sort”

15

Saves and Restores

sort: addi $sp, $sp, -20
sw $ra, 16($sp)
sw $s3, 12($sp)
sw $s2, 8($sp)
sw $s1, 4($sp)
sw $s0, 0($sp)
move $s2, $a0
move $s3, $a1
…

move $a0, $s2 # the inner loop body starts here
move $a1, $s1
jal swap
…

exit1: lw $s0, 0($sp)
…

addi $sp, $sp, 20
jr $ra

9 lines of C code 35 lines of assembly

16

IA-32 Instruction Set

• Intel’s IA-32 instruction set has evolved over 20 years –
old features are preserved for software compatibility

• Numerous complex instructions – complicates hardware
design (Complex Instruction Set Computer – CISC)

• Instructions have different sizes, operands can be in
registers or memory, only 8 general-purpose registers,
one of the operands is over-written

• RISC instructions are more amenable to high performance
(clock speed and parallelism) – modern Intel processors
convert IA-32 instructions into simpler micro-operations

17

Endian-ness

Two major formats for transferring values between registers and memory

Memory: low address 45 7b 87 7f high address

Little-endian register: the first byte read goes in the low end of the register
Register: 7f 87 7b 45

Most-significant bit Least-significant bit (x86)

Big-endian register: the first byte read goes in the big end of the register
Register: 45 7b 87 7f

Most-significant bit Least-significant bit (MIPS, IBM)

18

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

