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Lecture 4: MIPS Instruction Set

• Today’s topic: 

 More MIPS instructions for math and control
 Code examples
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Immediate Operands

• An instruction may require a constant as input

• An immediate instruction uses a constant number as one
of the inputs (instead of a register operand)

• Putting a constant in a register requires addition to
register $zero (a special register that always has zero in it)
-- since every instruction requires at least one operand

to be a register

• For example, putting the constant 1000 into a register:

addi   $s0, $zero, 1000   
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Example

int a, b, c, d[10];

addi $s0, $zero, 1000   # the program has base address
#  1000 and this is saved in $s0
# $zero is a register that always
# equals zero

addi $s1, $s0, 0          # this is the address of variable a
addi $s2, $s0, 4          # this is the address of variable b
addi $s3, $s0, 8          # this is the address of variable c
addi $s4, $s0, 12        # this is the address of variable d[0]
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Memory Instruction Format

• The format of a load instruction:

destination register
source address

lw $t0,   8($t3)

any register
a constant that is added to the register in brackets
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Memory Instruction Format

• The format of a store instruction:

source register
source address

sw $t0,   8($t3)

any register
a constant that is added to the register in brackets
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Example

Convert to assembly:

C code:     d[3]  = d[2] + a;
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Example

Convert to assembly:

C code:     d[3]  = d[2] + a;

Assembly:  # addi instructions as before
lw      $t0, 8($s4)     #  d[2] is brought into $t0
lw      $t1, 0($s1)     #   a  is brought into $t1
add   $t0, $t0, $t1    #  the sum is in $t0
sw     $t0, 12($s4)   #  $t0 is stored into d[3]

Assembly version of the code continues to expand!
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Memory Organization

• The space allocated on stack by a procedure is termed the activation 
record (includes saved values and data local to the procedure) – frame
pointer points to the start of the record and stack pointer points to the 
end – variable addresses are specified relative to $fp as $sp may 
change during the execution of the procedure

• $gp points to area in memory that saves global variables
• Dynamically allocated storage (with malloc()) is placed on the heap

Stack

Dynamic data (heap)
Static data (globals)

Text (instructions)
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Another Version

Convert to assembly:

C code:     d[3]  = d[2] + a;

Assembly: 
lw $t0, 20($gp)     #  d[2] is brought into $t0
lw $t1, 0($gp)     #   a  is brought into $t1
add   $t0, $t0, $t1    #  the sum is in $t0
sw $t0, 24($gp)   #  $t0 is stored into d[3]
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Recap – Numeric Representations

• Decimal        3510  =  3 x 101 + 5 x 100

• Binary          001000112  =  1 x 25 +  1 x 21 +  1 x 20

• Hexadecimal (compact representation)
0x 23    or   23hex     =   2 x 161 +  3 x 160

0-15 (decimal)    0-9, a-f  (hex)

Dec  Binary  Hex
0    0000     00
1    0001     01
2    0010     02
3    0011     03

Dec  Binary  Hex
4    0100     04
5    0101     05
6    0110     06
7    0111     07

Dec  Binary  Hex
8    1000     08
9    1001     09

10    1010     0a
11    1011     0b

Dec  Binary  Hex
12    1100     0c
13    1101     0d
14    1110     0e
15    1111     0f
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Instruction Formats

Instructions are represented as 32-bit numbers (one word),
broken into 6 fields

R-type instruction add     $t0, $s1, $s2
000000     10001    10010    01000    00000    100000
6 bits         5 bits     5 bits     5 bits      5 bits      6 bits
op              rs           rt           rd         shamt     funct

opcode     source    source    dest    shift amt   function

I-type instruction               lw    $t0, 32($s3)
6 bits        5 bits    5 bits         16 bits

opcode         rs          rt            constant
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Logical Operations

Logical ops          C operators      Java operators         MIPS instr

Shift Left                    <<                        <<                         sll
Shift Right                  >>                       >>>                       srl
Bit-by-bit AND             &                         &                     and, andi
Bit-by-bit OR               |                           |                         or, ori
Bit-by-bit NOT            ~                          ~                           nor
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Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2:      beq register1,  register2,  L1
Similarly,  bne and  slt (set-on-less-than)

• Unconditional branch:
j     L1
jr $s0    (useful for large case statements and big jumps)

Convert to assembly:
if  (i == j)

f = g+h;
else

f = g-h;
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Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2:      beq register1,  register2,  L1
Similarly,  bne and  slt (set-on-less-than)

• Unconditional branch:
j     L1
jr $s0    (useful for large case statements and big jumps)

Convert to assembly:
if  (i == j)                                   bne $s3, $s4, Else

f = g+h;                                 add   $s0, $s1, $s2
else                                           j        Exit

f = g-h;                       Else:   sub   $s0, $s1, $s2
Exit:
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Example

Convert to assembly:

while   (save[i] == k)
i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6
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Example

Convert to assembly:

while   (save[i] == k)
i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

Loop:  sll      $t1, $s3, 2
add    $t1, $t1, $s6
lw      $t0, 0($t1)
bne    $t0, $s5, Exit
addi   $s3, $s3, 1
j         Loop

Exit:
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Registers

• The 32 MIPS registers are partitioned as follows:

 Register 0 :  $zero        always stores the constant 0
 Regs 2-3   :  $v0, $v1   return values of a procedure
 Regs 4-7   :  $a0-$a3   input arguments to a procedure
 Regs 8-15 :  $t0-$t7     temporaries
 Regs 16-23: $s0-$s7    variables
 Regs 24-25: $t8-$t9     more temporaries
 Reg   28     : $gp          global pointer
 Reg   29     : $sp           stack pointer
 Reg   30     : $fp            frame pointer
 Reg   31     : $ra           return address 
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