Lecture 4: MIPS Instruction Set

* Today’s topic:

= More MIPS instructions for math and control
= Code examples

Immediate Operands

e An instruction may require a constant as input

 An Immediate Iinstruction uses a constant number as one
of the inputs (instead of a register operand)

 Putting a constant in a register requires addition to
register $zero (a special register that always has zero in it)
-- since every Iinstruction requires at least one operand
to be a register

* For example, putting the constant 1000 into a register:

addi $s0, $zero, 1000

Example

Int a, b, c, d[10];

addi $s0, $zero, 1000 # the program has base address
1000 and this is saved in $s0
$zero is a register that always
equals zero

addi $s1, $s0, O # this Is the address of variable a
addi $s2, $s0, 4 # this is the address of variable b
addi $s3, $s0, 8 # this Is the address of variable c

addi $s4, $s0, 12 # this is the address of variable d[O]

Memory Instruction Format

 The format of a load instruction:

destination register
] source address

lw $t0, 8($t3)
any register

a constant that is added to the register in brackets

Memory Instruction Format

 The format of a store instruction:

source register
] source address

sw $t0, ,8($t3)
any register

a constant that is added to the register in brackets

Example

Convert to assembly:

C code: d[3] =d[2] + a;

Example

Convert to assembly:

C code: d[3] =d[2] + a;

Assembly: # addi instructions as before
lw $t0, 8($s4) # d[2] is brought into $t0
lw $t1, 0($s1) # a is broughtinto $t1
add $t0, $t0, $t1 # the sum is in $tO
sw $t0, 12($s4) # $t0 is stored into d[3]

Assembly version of the code continues to expand!

Memory Organization

» The space allocated on stack by a procedure is termed the activation
record (includes saved values and data local to the procedure) — frame
pointer points to the start of the record and stack pointer points to the
end — variable addresses are specified relative to $fp as $sp may
change during the execution of the procedure

» $gp points to area in memory that saves global variables

* Dynamically allocated storage (with malloc()) is placed on the heap

Static data (globals)

Text (instructions)

Another Version

Convert to assembly:

C code: d[3] =d[2] + a;

Assembly:
lw $t0, 20($gp) # d[2] is brought into $t0

lw $t1, O($gp) # a is broughtinto $tl
add $t0, $t0, $t1 # the sum is in $tO
sw $t0, 24($gp) # $tO is stored into d[3]

Recap — Numeric Representations

 Decimal 35, = 3x10' +5x10°
* Binary 00100011, = 1x2°> + 1x2t + 1x2°

* Hexadecimal (compact representation)
Ox23 or 23,, = 2x16' + 3x16°

0-15 (decimal) -> 0-9, a-f (hex)

Dec Binary Hex | Dec Binary Hex | Dec Binary Hex | Dec Binary Hex
0O 0000 OO0 4 0100 04 8 1000 08 | 12 1100 Oc
1 0001 01 5 0101 05 9 1001 09 | 13 1101 Od

2 0010 02 6 0110 06 | 10 1010 Oa | 14 1110 Oe

7

3 0011 O3 0111 Ov |11 1011 Ob | 15 1111 Of
10

Instruction Formats

Instructions are represented as 32-bit numbers (one word),
broken into 6 fields

R-type instruction add $tO, $s1, $s2

000000 10001 10010 01000 00000 100000

6 bits 5bits 5bits 5bhbits 5bhits 6 bits
op s rt rd shamt funct

opcode source source dest shiftamt function

I-type instruction lw $t0, 32($s3)
6 bits 5 bits 5 bits 16 bits
opcode Is rt constant

11

Logical Operations

Logical ops

Shift Left
Shift Right
Bit-by-bit AND
Bit-by-bit OR
Bit-by-bit NOT

C operators

<<
>>

&
|

—~

Java operators

<<
>>>
&

~

MIPS instr

sl
srl
and, andi
or, ori
nor

12

Control Instructions

e Conditional branch: Jump to instruction L1 if registerl
equals reqgister2: beq registerl, register2, L1
Similarly, bne and slt (set-on-less-than)

« Unconditional branch:
j L1
jr $sO0 (useful for large case statements and big jumps)

Convert to assembly:

if (i==))
f = g+h;
else

13

Control Instructions

e Conditional branch: Jump to instruction L1 if registerl
equals reqgister2: beq registerl, register2, L1
Similarly, bne and slt (set-on-less-than)

« Unconditional branch:
j L1
jr $sO0 (useful for large case statements and big jumps)

Convert to assembly:

if (i==j) bne $s3, $s4, Else
f = g+h; add $s0, $s1, $s2
else] Exit
f = g-h; Else: sub $s0, $s1, $s2

Exit: H

Example

Convert to assembly:
while (save[i] == k)

| +=1;

I and k are in $s3 and $s5 and
base of array save[] is in $s6

15

Example

Convert to assembly:

Loop: sl $tl, $s3, 2
while (save[i] == k) add $t1, $t1, $s6
i +=1; lw $t0, O($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1

| and k are in $s3 and $s5 and] Loop
base of array save[] isin $s6 | Exit:

16

Registers

* The 32 MIPS registers are partitioned as follows:

= Register 0 : $zero always stores the constant 0

= Regs 2-3 : $Vv0, $v1 return values of a procedure

= Regs 4-7 : $a0-%$a3 input arguments to a procedure
= Regs 8-15: $t0-$t7 temporaries

= Regs 16-23: $s0-$s7 variables

* Regs 24-25: $t8-$t9 more temporaries

" Reg
" Reg
" Reg
" Reg

28 1 3gp global pointer
29 1 %sp stack pointer
30 :$fp frame pointer
31 :%ra return address

17

Title

» Bullet

18

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

