
1

Lecture 2: Performance

• Today’s topics:

 Performance trends and equations

• Reminders: YouTube videos, canvas, and class webpage:
http://www.cs.utah.edu/~rajeev/cs3810/

2

Important Trends

• Historical contributions to performance:
1. Better processes (faster devices) ~20%
2. Better circuits/pipelines ~15%
3. Better organization/architecture ~15%

In the future, bullet-2 will help little and bullet-1 will
eventually disappear!

Pentium P-Pro P-II P-III P-4 Itanium Montecito
Year 1993 95 97 99 2000 2002 2005
Transistors 3.1M 5.5M 7.5M 9.5M 42M 300M 1720M
Clock Speed 60M 200M 300M 500M 1500M 800M 1800M

At this point, adding transistors
to a core yields little benefit

Moore’s Law in action

3

Processor Technology Trends

• Shrinking of transistor sizes: 250nm (1997)
130nm (2002) 70nm (2008) 35nm (2014)

• Transistor density increases by 35% per year and die size
increases by 10-20% per year… functionality improvements!

• Transistor speed improves linearly with size (complex
equation involving voltages, resistances, capacitances)

• Wire delays do not scale down at the same rate as
transistor delays

4

Memory and I/O Technology Trends

• DRAM density increases by 40-60% per year, latency has
reduced by 33% in 10 years (the memory wall!), bandwidth
improves twice as fast as latency decreases

• Disk density improves by 100% every year, latency
improvement similar to DRAM

• Networks: primary focus on bandwidth; 10Mb 100Mb
in 10 years; 100Mb 1Gb in 5 years

5

Performance Metrics

• Possible measures:
 response time – time elapsed between start and end

of a program
 throughput – amount of work done in a fixed time

• The two measures are usually linked
 A faster processor will improve both
 More processors will likely only improve throughput
 Some policies will improve throughput and worsen

response time

• What influences performance?

6

Execution Time

Consider a system X executing a fixed workload W

PerformanceX = 1 / Execution timeX

Execution time = response time = wall clock time
- Note that this includes time to execute the workload
as well as time spent by the operating system
co-ordinating various events

The UNIX “time” command breaks up the wall clock time
as user and system time

7

Speedup and Improvement

• System X executes a program in 10 seconds, system Y
executes the same program in 15 seconds

• System X is 1.5 times faster than system Y

• The speedup of system X over system Y is 1.5 (the ratio)

• The performance improvement of X over Y is
1.5 -1 = 0.5 = 50%

• The execution time reduction for the program, compared to
Y is (15-10) / 15 = 33%
The execution time increase, compared to X is
(15-10) / 10 = 50%

8

A Primer on Clocks and Cycles

9

Performance Equation - I

CPU execution time = CPU clock cycles x Clock cycle time
Clock cycle time = 1 / Clock speed

If a processor has a frequency of 3 GHz, the clock ticks
3 billion times in a second – as we’ll soon see, with each
clock tick, one or more/less instructions may complete

If a program runs for 10 seconds on a 3 GHz processor,
how many clock cycles did it run for?

If a program runs for 2 billion clock cycles on a 1.5 GHz
processor, what is the execution time in seconds?

10

Performance Equation - II

CPU clock cycles = number of instrs x avg clock cycles
per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time x number of instrs x avg CPI

If a 2 GHz processor graduates an instruction every third cycle,
how many instructions are there in a program that runs for
10 seconds?

11

Factors Influencing Performance

Execution time = clock cycle time x number of instrs x avg CPI

• Clock cycle time: manufacturing process (how fast is each
transistor), how much work gets done in each pipeline stage
(more on this later)

• Number of instrs: the quality of the compiler and the
instruction set architecture

• CPI: the nature of each instruction and the quality of the
architecture implementation

12

Example

Execution time = clock cycle time x number of instrs x avg CPI

Which of the following two systems is better?

• A program is converted into 4 billion MIPS instructions by a
compiler ; the MIPS processor is implemented such that
each instruction completes in an average of 1.5 cycles and
the clock speed is 1 GHz

• The same program is converted into 2 billion x86 instructions;
the x86 processor is implemented such that each instruction
completes in an average of 6 cycles and the clock speed is
1.5 GHz

13

Benchmark Suites

• Each vendor announces a SPEC rating for their system
 a measure of execution time for a fixed collection of

programs
 is a function of a specific CPU, memory system, IO

system, operating system, compiler
 enables easy comparison of different systems

The key is coming up with a collection of relevant programs

14

SPEC CPU

• SPEC: System Performance Evaluation Corporation, an industry
consortium that creates a collection of relevant programs

• The 2006 version includes 12 integer and 17 floating-point applications

• The SPEC rating specifies how much faster a system is, compared to
a baseline machine – a system with SPEC rating 600 is 1.5 times
faster than a system with SPEC rating 400

• Note that this rating incorporates the behavior of all 29 programs – this
may not necessarily predict performance for your favorite program!

15

Deriving a Single Performance Number

How is the performance of 29 different apps compressed
into a single performance number?

• SPEC uses geometric mean (GM) – the execution time
of each program is multiplied and the Nth root is derived

• Another popular metric is arithmetic mean (AM) – the
average of each program’s execution time

• Weighted arithmetic mean – the execution times of some
programs are weighted to balance priorities

16

Amdahl’s Law

• Architecture design is very bottleneck-driven – make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

• Example: a web server spends 40% of time in the CPU
and 60% of time doing I/O – a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) – Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66)

17

Common Principles

• Amdahl’s Law

• Energy: systems leak energy even when idle

• Energy: performance improvements typically also result
in energy improvements

• 90-10 rule: 10% of the program accounts for 90% of
execution time

• Principle of locality: the same data/code will be used
again (temporal locality), nearby data/code will be
touched next (spatial locality)

18

Example Problem

• A 1 GHz processor takes 100 seconds to execute a program,
while consuming 70 W of dynamic power and 30 W of
leakage power. Does the program consume less energy
in Turbo boost mode when the frequency is increased to
1.2 GHz?

19

Example Problem

• A 1 GHz processor takes 100 seconds to execute a program,
while consuming 70 W of dynamic power and 30 W of
leakage power. Does the program consume less energy
in Turbo boost mode when the frequency is increased to
1.2 GHz?

Normal mode energy = 100 W x 100 s = 10,000 J
Turbo mode energy = (70 x 1.2 + 30) x 100/1.2 = 9,500 J

Note:
Frequency only impacts dynamic power, not leakage power.
We assume that the program’s CPI is unchanged when

frequency is changed, i.e., exec time varies linearly
with cycle time.

20

Recap

• Knowledge of hardware improves software quality:
compilers, OS, threaded programs, memory management

• Important trends: growing transistors, move to multi-core
and accelerators, slowing rate of performance improvement,
power/thermal constraints, long memory/disk latencies

• Reasoning about performance: clock speeds, CPI,
benchmark suites, performance equations

• Next: assembly instructions

21

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

