Lecture 16: Basic CPU Design

e Today'’s topics:

» Single-cycle CPU
* Multi-cycle CPU

 Reminder:
» Assignment 6 will be posted today — due in a week



Basic MIPS Architecture

* Now that we understand clocks and storage of states,
we’ll design a simple CPU that executes:

* pasic math (add, sub, and, or, slt)
* memory access (lw and sw)
* pranch and jump instructions (beqg and j)



Implementation Overview

* We need memory
* to store instructions
" to store data
» for now, let’'s make them separate units

* We need registers, ALU, and a whole lot of control logic

 CPU operations common to all instructions:
* use the program counter (PC) to pull instruction out
of instruction memory
* read register values



View from 30,000 Feet
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« What is the role of the Add units?

« Explain the inputs to the data memory unit
e Explain the inputs to the ALU

« Explain the inputs to the register unit



Clocking Methodology
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* Which of the above units need a clock?
* What is being saved (latched) on the rising edge of the clock?
Keep in mind that the latched value remains there for an entire cyclg:



Implementing R-type Instructions

e Instructions of the form add $t1, $t2, $t3
« Explain the role of each signal
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Implementing Loads/Stores

e Instructions of the form |w $t1, 8($t2) and sw $t1, 8($t2)
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Implementing J-type Instructions

e Instructions of the form beq $t1, $t2, offset
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View from 10,000 Feet
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View from 5,000 Feet
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Inetruction [25-21]

Heti D |

B ghch

="

ALLl

reaus

| M TI'=_|

1

&[Sl !l'.F i
'i:ﬂl‘llil‘-'l !

————

1’1.'1 ity
|

R

Instruction [20-16]

register 1

| Fmen e

MEiTuGEn | 1511

mamary 3

ragisisr 2

g o F
nagister il
Wika
dats  Reglsters

Irstruction [15-03

”"“w

Wrike i = [T

B

'IF":.'TI rlion [B=0]

‘_ COEIF Pl

S

ALL -_

Illlllull 1 mw

oaiA

10



Single Vs. Multi-Cycle Machine

* In this implementation, every instruction requires one
cycle to complete = cycle time = time taken for the
slowest instruction

* If the execution was broken into multiple (faster)
cycles, the shorter instructions can finish sooner

Cycle time = 20 ns Cycle time =5 ns
« > —
Load « 1 cycle Load « 4 cycles
Add:leCIe: Add:SCyCIeS:
Beq <1c_yclg Beq <Zc_yclgs

Time for a load, add, and beq = 60 ns 45ns M



Multi-Cycle Processor
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 Single memory unit shared by instructions and memory
 Single ALU also used for PC updates

* Registers (latches) to store the result of every block
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Cycle 1

 The PC is used to select the appropriate instruction out
of the memory unit

* The instruction is latched into the instruction register at
the end of the clock cycle

 The ALU performs PC+4 and stores it in the PC at the
end of the clock cycle (note that ALU is free this cycle)

e The control circuits must now be “cycle-aware” — the new
PC need not look up the instr-memory until we're done
executing the current instruction
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Cycle 2

* The instruction specifies the required register values —
these are read from the register file and stored in
latches A and B (this happens even if the operands are
not required)

* The last 16 bits are also used to compute PC+4+offset
(in case this instruction turns out to be a branch) — this
Is latched into ALUOut

* Note that we haven't yet figured out the instruction type,
so the above operations are “speculative”
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Cycle 3

The operations depend on the instruction type

 Memory access: the address is computed by adding the offset to the
value read from the register file, result is latched into ALUOut

 ALU: ALU operations are performed on the values read from the
register file and the result is latched into ALUOut

* Branch: the ALU performs the operations for “beq” and if the branch
happens, the branch target (currently in ALUOuULt) is latched into the
PC at the end of the cycle

* Note that the branch operation has completed by the end of cycle 3,
the other two are still
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Cycle 4

 Memory access: the address in ALUOuULt is used to pick
out a word from memory — this is latched into the memory
data register

 ALU: the result latched into ALUOQut is fed as input to the
register file, the instruction stored in the instruction-latch
specifies where the result is written into

At the end of this cycle, the ALU operation and memory
writes are complete
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Cycle 5

 Memory read: the value read from memory (and latched
In the memory data register) is now written into the
register file

e SUMmMary:
* Branches and jumps: 3 cycles
* ALU, stores: 4 cycles
* Memory access: 5 cycles
ALU is slower since it requires a register file write
Store is slower since it requires a data memory write
Load is slower since it requires a data memory read

and a register file write
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Average CPI

 Now we can compute average CPI for a program: if the
given program is composed of loads (25%), stores (10%),
branches (13%), and ALU ops (52%), the average CPI is

0.25x5+0.1x4+013x3+0.652x4=4.12

* You can break this CPU design into shorter cycles, for
example, a load would then take 10 cycles, stores 8, ALU 8,
branch 6 = average CPI would double, but so would the
clock speed, the net performance would remain roughly
the same
Later, we’'ll see that this strategy does help in most other

cases.
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Control Logic

* Note that the control signals for every unit are determined by two factors:

* the instruction type
» the cycle number for this instruction

The control is therefore implemented as a finite state machine — every

cycle, the FSM transitions to a new state with a certain set of outputs
(the control signals) and this is a function of the inputs (the instr type)
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