Lecture 15: Recap

e Today'’s topics:
* Recap for mid-term

 Reminders:
* no class Thursday
= office hours on Monday (10am-4pm)
* mid-term Tuesday (arrive early, questions will be
handed out at 9am, open-notes-slides-textbook-
assignments)

Modern Trends

 Historical contributions to performance:
» Better processes (faster devices) ~20%
= Better circuits/pipelines ~15%
= Better organization/architecture ~15%

In the future, bullet-2 will help little and bullet-3 will not
help much for a single core!

Pentium P-Pro P-ll P-lll P-4 ltanium Montecito
Year 1993 95 97 99 2000 2002 2005
Transistors 3.1M 55M 7.5M 9.5M 42M 300M 1720M
Clock Speed 60M 200M 300M 500M 1500M § 800M 1800M

Moore’s Law in action At this point, adding transistors
to a core yields little benefit 2

Power Consumption Trends

* Dyn power o activity X capacitance x voltage? x frequency

« Capacitance per transistor and voltage are decreasing,
but number of transistors and frequency are increasing at
a faster rate

» Leakage power is also rising and will soon match dynamic
power

* Power consumption is already around 100W in
some high-performance processors today

Basic MIPS Instructions

olw $t1, 16($t2)

e add $t3, $t1, $t2

e addi $t3, $t3, 16

esw $t3, 16($t2)

 beq $t1, $t2, 16

* blt is implemented as slt and bne
¢ | 64

ojr $t1

oSl $t1, $t1, 2

Loop: sll $t1, $s3, 2
Convert to assembly: add $t1, $t1, $s6
while (saveli] == k) lw $t0, 0($t1)
| +=1; bne $t0, $s5, Exit
addi $s3, $s3, 1
| and k are in $s3 and $s5 and | Loop)
base of array save[] is in $s6 | | Exit:

Registers

* The 32 MIPS registers are partitioned as follows:

» Register 0 : $zero

" Regs 2-3
" Regs 4-7

. $v0, $v1
: $a0-%a3

» Regs 8-15 : $t0-$t7
» Regs 16-23: $s0-$s7
» Regs 24-25: $t8-$t9

" Reg
" Reg
" Reg
" Reg

28
29
30
31

: $gp
. $sp
. $fp

: $ra

always stores the constant O
return values of a procedure
Input arguments to a procedure
temporaries

variables

more temporaries

global pointer

stack pointer

frame pointer

return address

Memory Organization

v

High address

Static data (globals) $fp

$gp
$sp

Text (instructions)

this way

Stack grows
l Low address

Procedure Calls/Returns

procA procB (int j)
{ {
Int j; int k;
= ... =,
call procB(j); K=...;
=, return k;
} }
ProcA: procB:
$s0 = ... # value of | $t0 = ... # some tempval
$t0 = ... # some tempval ... = $a0 # using the argument
$a0 = $s0 # the argument $s0 = ... # value of k
$v0 = $s0;
jal procB jr $ra
... =$v0

Saves and Restores

 Caller saves: » As every element is saved on stack,
» $ra, $a0, $t0, $fp the stack pointer is decremented
o If the callee’s values cannot remain
 Callee saves: In registers, they will also be spilled
= $s0 Into the stack (don’t have to create
space for them at the start of the proc)

ProcA: procB:
$s0 = ... # value of | $t0 = ... # some tempval
$t0 = ... # some tempval ... = $a0 # using the argument
$a0 = $s0 # the argument $s0 = ... # value of k
$v0 = $s0;
jal procB jr $ra
.. =%v0 8

Recap — Numeric Representations

 Decimal 35, = 3x10' +5x 10
* Binary 00100011, = 1x2°> + 1x2t + 1x2°

 Hexadecimal (compact representation)
Ox23 or 23, = 2x16' + 3x16°

0-15 (decimal) - 0-9, a-f (hex)

Dec Binary Hex | Dec Binary Hex | Dec Binary Hex | Dec Binary Hex
0O 0000 00 4 0100 04 8 1000 08 | 12 1100 Oc
1 0001 01 0101 05 9 1001 09 | 13 1101 Od

2 0010 02 0110 06 | 10 1010 Oa | 14 1110 Oe

3

0011 O3 0111 O7 |11 1011 Ob | 15 1111 Of
9

~N O O1

2's Complement

0000 0000 0000 0000 0000 0000 0000 0000, = O
0000 0000 0000 0000 0000 0000 0000 0001y, = L.,
01111111 1111 1111 1111 1111 1111 1111, = 23!-1
1000 0000 0000 0000 0000 0000 0000 0000, = -2531
1000 0000 0000 0000 0000 0000 0000 0001, = ~(23! — 1)
1000 0000 0000 0000 0000 0000 0000 0010, = ~(23! — 2)
11111111 1111 1111 1111 1111 1111 1110,,,, = -2
11111111 1111 1111 1111 1111 1111 1111, =-1

Note that the sum of a number x and its inverted representation x’ always
equals a string of 1s (-1).

X+x =-1
X +1=-X ... hence, can compute the negative of a number by
X=X +1 inverting all bits and adding 1

This format can directly undergo addition without any conversions!

Each number represents the quantity

10

Multiplication Example

Multiplicand 1000
Multiplier X 1001

Product 1001000

ten

In every step
e multiplicand is shifted
 next bit of multiplier is examined (also a shifting step)

o if this bit is 1, shifted multiplicand is added to the product "

HW Algorithm

il

MuSphcand

Shit lof |-
lﬂmm

e

Y
N e
B4-bh ALL Shilt right
Product h|

32 bits \
Goniol tost T

oy
Writa

Imhm

In every step
e multiplicand is shifted
 next bit of multiplier is examined (also a shifting step)
o if this bit is 1, shifted multiplicand is added to the product

Division

1001, Quotient
1001010 Dividend
-1000
10

101
1010
-1000
10

Divisor 1000

ten | ten

ten Remainder

At every step,
e shift divisor right and compare it with current dividend
o if divisor is larger, shift O as the next bit of the quotient
o if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient 13

Division

1001, Quotient
1001010 Dividend

Divisor 1000

ten | ten

0001001010 0001001010 0000001010 0000001010
100000000000 - 0001000000~ 0000100000->0000001000
Quo: O 000001 0000010 000001001

At every step,
e shift divisor right and compare it with current dividend
o if divisor is larger, shift O as the next bit of the quotient
o if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient 14

Hardware for Division

—
Ceisor
E-‘-h'rlt-"'ru:h1|-<—

&4 hils

A comparison requires a subtract; the sign of the result is
examined; if the result is negative, the divisor must be added back

15

Binary FP Numbers

« 20.45 decimal = ? Binary
e 20 decimal = 10100 binary

«0.45x2=0.9 (notgreater than 1, first bit after binary point is 0)
0.90x2=18 (greater than 1, second bit is 1, subtract 1 from 1.8)
0.80x2=1.6 (greater than 1, third bit is 1, subtract 1 from 1.6)
0.60x2=1.2 (greater than 1, fourth bit is 1, subtract 1 from 1.2)
0.20x2=0.4 (less than 1, fifth bit is 0)
0.40x2=0.8 (less than 1, sixth bit is 0)
0.80x2=1.6 (greater than 1, seventh bit is 1, subtract 1 from 1.6)

... and the pattern repeats

10100.011100110011001100...

Normalized form =1.0100011100110011... x 24
16

IEEE 754 Format

Final representation: (-1)° x (1 + Fraction) x 2(Exponent - Bias)

* Represent -0.75,,, in single and double-precision formats

Single: (1 +8 + 23)
1 01111110 1000...000

Double: (1 + 11 + 52)
1 01111111110 1000...000

* What decimal number is represented by the following
single-precision number?
1 1000 0001 01000...0000
5.0 Y

FP Addition

« Consider the following decimal example (can maintain
only 4 decimal digits and 2 exponent digits)

9.999 x10t + 1.610x 101
Convert to the larger exponent:
9.999 x10* + 0.016 x 10!
Add

10.015 x 101

Normalize

1.0015 x 102

Check for overflow/underflow
Round

1.002 x 102

Re-normalize

18

Performance Measures

* Performance = 1 / execution time

« Speedup = ratio of performance

« Performance improvement = speedup -1

« Execution time = clock cycle time x CPIl x number of instrs

Program takes 100 seconds on ProcA and 150 seconds on ProcB

Speedup of A over B =150/100 =1.5
Performance improvement of AoverB=1.5-1=0.5=50%

Speedup of B over A =100/150 = 0.66 (speedup less than 1 means
performance went down)

Performance improvement of B over A =0.66 —1 =-0.33 =-33%

or Performance degradation of B, relative to A = 33%

If multiple programs are executed, the execution times are combined
Into a single number using AM, weighted AM, or GM 19

Boolean Algebra

«cA+B=A.B

>
W
1
> |
+
w |

Any truth table can be expressed
as a sum of products

(A.B.C)+(A.C.B)+(C.B.A

e Can also use “product of sums”

« Any equation can be implemented
with an array of ANDSs, followed by
an array of ORs

HHHHOOOO}
PP OORRF OO
HOHOHOHOO
OFR P OFr OOOoO|m

20

Adder Implementations

* Ripple-Carry adder — each 1-bit adder feeds its carry-out to next stage —
simple design, but we must wait for the carry to propagate thru all bits

» Carry-Lookahead adder — each bit can be represented by an equation
that only involves input bits (a,, b;) and initial carry-in (c,) --thisis a
complex equation, so it’s broken into sub-parts

For bits a;, b;, and ¢, a carry is generated if a.b;=1 andacarry s
propagated if a +b,=1
Cin=0t+p.GC

Similarly, compute these values for a block of 4 bits, then for a block

of 16 bits, then for a block of 64 bits....Finally, the carry-out for the

64 bit is represented by an equation such as this:
C,=G;+G,.P;+G,.P,.P; + G,.P,.P,.P; + C,.P,.P,.P,.P,

Each of the sub-terms is also a similar expression 21

Title

e Bullet

22

