Lecture 15: Recap

- Today's topics:
 - Recap for mid-term
- Reminders:
 - no class Thursday
 - office hours on Monday (10am-4pm)
 - mid-term Tuesday (arrive early, questions will be handed out at 9am, open-notes-slides-textbookassignments)

Modern Trends

- Historical contributions to performance:
 - Better processes (faster devices) ~20%
 - Better circuits/pipelines ~15%
 - Better organization/architecture ~15%

In the future, bullet-2 will help little and bullet-3 will not help much for a single core!

	Pentium	P-Pro	P-II	P-III	P-4	Itanium	Montecito
Year	1993	95	97	99	2000	2002	2005
Transistors	3.1M	5.5M	7.5M	9.5M	42M	300M	1720M
Year Transistors Clock Speed	60M	200M	300M	500M	1500M	800M	1800M

Moore's Law in action

At this point, adding transistors to a core yields little benefit

Power Consumption Trends

- Dyn power α activity x capacitance x voltage² x frequency
- Capacitance per transistor and voltage are decreasing, but number of transistors and frequency are increasing at a faster rate
- Leakage power is also rising and will soon match dynamic power
- Power consumption is already around 100W in some high-performance processors today

Basic MIPS Instructions

```
lw $t1, 16($t2)
add $t3, $t1, $t2
addi $t3, $t3, 16
sw $t3, 16($t2)
beq $t1, $t2, 16
blt is implemented as slt and bne
j 64
jr $t1
sll $t1, $t1, 2
```

```
Convert to assembly: while (save[i] == k) i += 1;
```

i and k are in \$s3 and \$s5 and base of array save[] is in \$s6

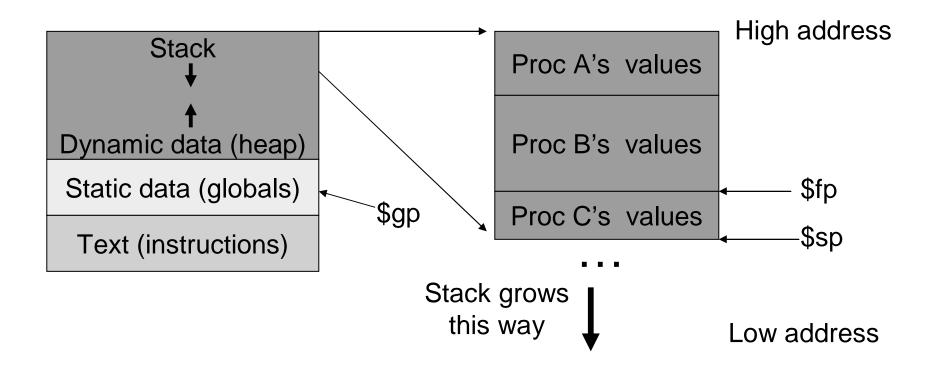
```
Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop
Exit:
```

Registers

• The 32 MIPS registers are partitioned as follows:

```
Register 0 : $zero
                     always stores the constant 0
Regs 2-3 : $v0, $v1 return values of a procedure
■ Regs 4-7 : $a0-$a3
                     input arguments to a procedure
■ Regs 8-15: $t0-$t7
                     temporaries
Regs 16-23: $s0-$s7
                     variables
■ Regs 24-25: $t8-$t9
                     more temporaries
■ Reg 28 : $gp
                     global pointer
■ Reg 29 : $sp
                     stack pointer
■ Reg 30 : $fp
                     frame pointer
■ Reg 31 : $ra
                     return address
```

Memory Organization



Procedure Calls/Returns

```
procA
{
    int j;
    j = ...;
    call procB(j);
    ... = j;
}
```

```
procA:
$$0 = ... # value of j
$$t0 = ... # some tempval
$$a0 = $$0 # the argument
...
jal procB
...
... = $$v0
```

```
procB (int j)
{
    int k;
    ... = j;
    k = ...;
    return k;
}
```

```
procB:
$t0 = ... # some tempval
... = $a0 # using the argument
$s0 = ... # value of k
$v0 = $s0;
jr $ra
```

Saves and Restores

- Caller saves:
 - \$ra, \$a0, \$t0, \$fp
- Callee saves:
 - **\$**\$0

- As every element is saved on stack, the stack pointer is decremented
- If the callee's values cannot remain in registers, they will also be spilled into the stack (don't have to create space for them at the start of the proc)

```
procA:
$$0 = ... # value of j
$$t0 = ... # some tempval
$$a0 = $$0 # the argument
...
jal procB
...
... = $v0
```

```
procB:

$t0 = ... # some tempval

... = $a0 # using the argument

$s0 = ... # value of k

$v0 = $s0;

jr $ra
```

Recap – Numeric Representations

• Decimal
$$35_{10} = 3 \times 10^1 + 5 \times 10^0$$

• Binary
$$00100011_2 = 1 \times 2^5 + 1 \times 2^1 + 1 \times 2^0$$

Hexadecimal (compact representation)

$$0x 23$$
 or $23_{\text{hex}} = 2 \times 16^1 + 3 \times 16^0$

$$0-15$$
 (decimal) \rightarrow 0-9, a-f (hex)

Dec	Binary	Hex									
0	0000	00	4	0100	04	8	1000	80	12	1100	0c
1	0001	01	5	0101	05	9	1001	09	13	1101	0d
2	0010	02	_			1	1010		1		
3	0011	03	7	0111	07	11	1011	0b	15	1111	Of
											9

2's Complement

```
\begin{array}{c} 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\
```

Note that the sum of a number x and its inverted representation x' always equals a string of 1s (-1).

$$x + x' = -1$$

 $x' + 1 = -x$... hence, can compute the negative of a number by $-x = x' + 1$ inverting all bits and adding 1

This format can directly undergo addition without any conversions! Each number represents the quantity

$$x_{31} - 2^{31} + x_{30} 2^{30} + x_{29} 2^{29} + ... + x_1 2^1 + x_0 2^0$$

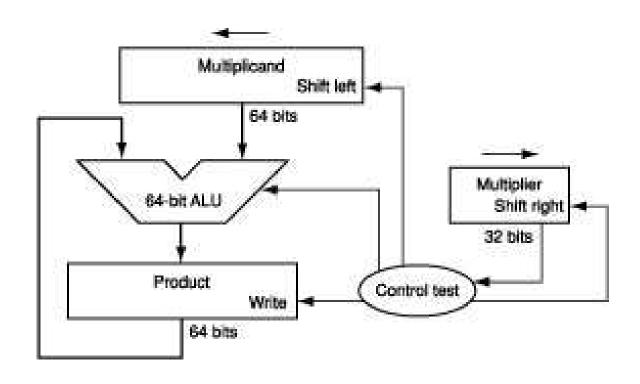
Multiplication Example

Multiplicand Multiplier	1000 _{ten} x 1001 _{ten}
	1000 0000
	0000 1000
Product	1001000

In every step

- multiplicand is shifted
- next bit of multiplier is examined (also a shifting step)
- if this bit is 1, shifted multiplicand is added to the product

HW Algorithm



In every step

- multiplicand is shifted
- next bit of multiplier is examined (also a shifting step)
- if this bit is 1, shifted multiplicand is added to the product

Division

At every step,

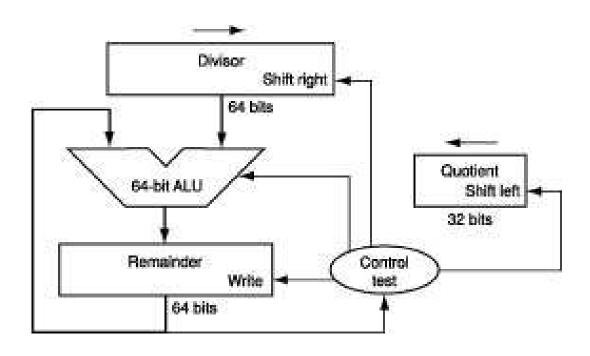
- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

Division

At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

Hardware for Division



A comparison requires a subtract; the sign of the result is examined; if the result is negative, the divisor must be added back

Binary FP Numbers

- 20.45 decimal = ? Binary
- 20 decimal = 10100 binary

```
• 0.45 \times 2 = 0.9 (not greater than 1, first bit after binary point is 0) 0.90 \times 2 = 1.8 (greater than 1, second bit is 1, subtract 1 from 1.8) 0.80 \times 2 = 1.6 (greater than 1, third bit is 1, subtract 1 from 1.6) 0.60 \times 2 = 1.2 (greater than 1, fourth bit is 1, subtract 1 from 1.2) 0.20 \times 2 = 0.4 (less than 1, fifth bit is 0) 0.40 \times 2 = 0.8 (less than 1, sixth bit is 0) 0.80 \times 2 = 1.6 (greater than 1, seventh bit is 1, subtract 1 from 1.6) ... and the pattern repeats
```

10100.011100110011001100... Normalized form = $1.0100011100110011... \times 2^4$

IEEE 754 Format

Final representation: (-1)^S x (1 + Fraction) x 2^(Exponent - Bias)

Represent -0.75_{ten} in single and double-precision formats

```
Single: (1 + 8 + 23)
1 0111 1110 1000...000
```

```
Double: (1 + 11 + 52)
1 0111 1111 110 1000...000
```

 What decimal number is represented by the following single-precision number?

```
1 1000 0001 01000...0000
-5.0
```

FP Addition

 Consider the following decimal example (can maintain only 4 decimal digits and 2 exponent digits)

```
9.999 x 10^1 + 1.610 x 10^{-1} Convert to the larger exponent:

9.999 x 10^1 + 0.016 x 10^1 Add

10.015 x 10^1 Normalize

1.0015 x 10^2 Check for overflow/underflow Round

1.002 x 10^2 Re-normalize
```

Performance Measures

- Performance = 1 / execution time
- Speedup = ratio of performance
- Performance improvement = speedup -1
- Execution time = clock cycle time x CPI x number of instrs

Program takes 100 seconds on ProcA and 150 seconds on ProcB

Speedup of A over B = 150/100 = 1.5Performance improvement of A over B = 1.5 - 1 = 0.5 = 50%

Speedup of B over A = 100/150 = 0.66 (speedup less than 1 means performance went down)

Performance improvement of B over A = 0.66 - 1 = -0.33 = -33% or Performance degradation of B, relative to A = 33%

If multiple programs are executed, the execution times are combined into a single number using AM, weighted AM, or GM

Boolean Algebra

•
$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

•
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Α	В	C	E
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Any truth table can be expressed as a sum of products

$$(A . B . \overline{C}) + (A . C . \overline{B}) + (C . B . \overline{A})$$

- Can also use "product of sums"
- Any equation can be implemented with an array of ANDs, followed by an array of ORs

Adder Implementations

- Ripple-Carry adder each 1-bit adder feeds its carry-out to next stage simple design, but we must wait for the carry to propagate thru all bits
- Carry-Lookahead adder each bit can be represented by an equation that only involves input bits (a_i, b_i) and initial carry-in (c₀) -- this is a complex equation, so it's broken into sub-parts

For bits a_i , $b_{i,}$, and c_i , a carry is generated if $a_i.b_i = 1$ and a carry is propagated if $a_i + b_i = 1$

$$C_{i+1} = g_i + p_i \cdot C_i$$

Similarly, compute these values for a block of 4 bits, then for a block of 16 bits, then for a block of 64 bits....Finally, the carry-out for the 64th bit is represented by an equation such as this:

$$C_4 = G_3 + G_2.P_3 + G_1.P_2.P_3 + G_0.P_1.P_2.P_3 + C_0.P_0.P_1.P_2.P_3$$

Each of the sub-terms is also a similar expression

Title

• Bullet