
1

Lecture 24: Multiprocessors

• Today’s topics:
 Directory-based cache coherence protocol
 Synchronization
 Consistency

2

Snooping-Based Protocols

• Three states for a block: invalid, shared, modified
• A write is placed on the bus and sharers invalidate themselves
• The protocols are referred to as MSI, MESI, etc.

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

3

Example

• P1 reads X: not found in cache-1, request sent on bus, memory responds,
X is placed in cache-1 in shared state

• P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1does nothing because this is just a read request,
memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

• P1 writes X: cache-1 has data in shared
state (shared only provides read perms),
request sent on bus, cache-2 snoops and
then invalidates its copy of X, cache-1
moves its state to modified

• P2 reads X: cache-2 has data in invalid
state, request sent on bus, cache-1 snoops
and realizes it has the only valid copy, so it
downgrades itself to shared state and
responds with data, X is placed in cache-2
in shared state, memory is also updated

4

Example

Request Cache
Hit/Miss

Request
on the bus

Who responds State in
Cache 1

State in
Cache 2

State in
Cache 3

State in
Cache 4

Inv Inv Inv Inv

P1: Rd X Miss Rd X Memory S Inv Inv Inv

P2: Rd X Miss Rd X Memory S S Inv Inv

P2: Wr X Perms
Miss

Upgrade X No response.
Other caches

invalidate.

Inv M Inv Inv

P3: Wr X Write
Miss

Wr X P2 responds Inv Inv M Inv

P3: Rd X Read Hit - - Inv Inv M Inv

P4: Rd X Read
Miss

Rd X P3 responds.
Mem wrtbk

Inv Inv S S

5

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

Write-update: when a processor writes, it updates other
shared copies of that block

6

Coherence in Distributed Memory Multiprocs

• Distributed memory systems are typically larger
bus-based snooping may not work well

• Option 1: software-based mechanisms – message-passing
systems or software-controlled cache coherence

• Option 2: hardware-based mechanisms – directory-based
cache coherence

7

Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

Directory Directory Directory Directory

8

Directory-Based Cache Coherence

• The physical memory is distributed among all processors

• The directory is also distributed along with the
corresponding memory

• The physical address is enough to determine the location
of memory

• The (many) processing nodes are connected with a
scalable interconnect (not a bus) – hence, messages
are no longer broadcast, but routed from sender to
receiver – since the processing nodes can no longer
snoop, the directory keeps track of sharing state

9

Cache Block States

• What are the different states a block of memory can have
within the directory?

• Note that we need information for each cache so that
invalidate messages can be sent

• The directory now serves as the arbitrator: if multiple
write attempts happen simultaneously, the directory
determines the ordering

10

Directory-Based Example

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

Directory Directory
X

Directory
Y

A: Rd X
B: Rd X
C: Rd X
A: Wr X
A: Wr X
C: Wr X
B: Rd X
A: Rd X
A: Rd Y
B: Wr X
B: Rd Y
B: Wr X
B: Wr Y

11

Example
Request Cache

Hit/Miss
Messages Dir

State
State
in C1

State
in C2

State
in C3

State
in C4

Inv Inv Inv Inv

P1: Rd X Miss Rd-req to Dir. Dir responds. X: S: 1 S Inv Inv Inv

P2: Rd X Miss Rd-req to Dir. Dir responds. X: S: 1, 2 S S Inv Inv

P2: Wr X Perms
Miss

Upgr-req to Dir. Dir sends
INV to P1. P1 sends ACK to
Dir. Dir grants perms to P2.

X: M: 2 Inv M Inv Inv

P3: Wr X Write
Miss

Wr-req to Dir. Dir fwds
request to P2. P2 sends

data to Dir. Dir sends data
to P3.

X: M: 3 Inv Inv M Inv

P3: Rd X Read Hit - - Inv Inv M Inv

P4: Rd X Read
Miss

Rd-req to Dir. Dir fwds
request to P3. P3 sends

data to Dir. Memory wrtbk.
Dir sends data to P4.

X: S: 3, 4 Inv Inv S S

12

Directory Actions

• If block is in uncached state:
 Read miss: send data, make block shared
Write miss: send data, make block exclusive

• If block is in shared state:
 Read miss: send data, add node to sharers list
Write miss: send data, invalidate sharers, make excl

• If block is in exclusive state:
 Read miss: ask owner for data, write to memory, send

data, make shared, add node to sharers list
 Data write back: write to memory, make uncached
Write miss: ask owner for data, write to memory, send

data, update identity of new owner, remain exclusive

13

Constructing Locks

• Applications have phases (consisting of many instructions)
that must be executed atomically, without other parallel
processes modifying the data

• A lock surrounding the data/code ensures that only one
program can be in a critical section at a time

• The hardware must provide some basic primitives that
allow us to construct locks with different properties

Bank balance
$1000

Rd $1000
Add $100
Wr $1100

Rd $1000
Add $200
Wr $1200

Parallel (unlocked) banking transactions

14

Synchronization

• The simplest hardware primitive that greatly facilitates
synchronization implementations (locks, barriers, etc.)
is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer
memory location into register and write 1 into memory
(if memory has 0, lock is free)

• lock: t&s register, location
bnz register, lock
CS
st location, #0

When multiple parallel threads
execute this code, only one
will be able to enter CS

15

Coherence Vs. Consistency

• Recall that coherence guarantees (i) write propagation
(a write will eventually be seen by other processors), and
(ii) write serialization (all processors see writes to the
same location in the same order)

• The consistency model defines the ordering of writes and
reads to different memory locations – the hardware
guarantees a certain consistency model and the
programmer attempts to write correct programs with
those assumptions

16

Consistency Example

• Consider a multiprocessor with bus-based snooping cache
coherence

Initially A = B = 0
P1 P2

A 1 B 1
… …

if (B == 0) if (A == 0)
Crit.Section Crit.Section

17

Consistency Example

• Consider a multiprocessor with bus-based snooping cache
coherence

Initially A = B = 0
P1 P2

A 1 B 1
… …

if (B == 0) if (A == 0)
Crit.Section Crit.Section

The programmer expected the
above code to implement a

lock – because of ooo, both processors
can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities

18

Sequential Consistency

• A multiprocessor is sequentially consistent if the result
of the execution is achieveable by maintaining program
order within a processor and interleaving accesses by
different processors in an arbitrary fashion

• The multiprocessor in the previous example is not
sequentially consistent

• Can implement sequential consistency by requiring the
following: program order, write serialization, everyone has
seen an update before a value is read – very intuitive for
the programmer, but extremely slow

19

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

