
1

Lecture 23: Virtual Memory, Multiprocessors

• Today’s topics:

 Virtual memory
 Multiprocessors, cache coherence

2

Virtual Memory

• Processes deal with virtual memory – they have the
illusion that a very large address space is available to
them

• There is only a limited amount of physical memory that is
shared by all processes – a process places part of its
virtual memory in this physical memory and the rest is
stored on disk (called swap space)

• Thanks to locality, disk access is likely to be uncommon

• The hardware ensures that one process cannot access
the memory of a different process

3

Address Translation

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to physical
page number

Physical address

13

4

Memory Hierarchy Properties

• A virtual memory page can be placed anywhere in physical
memory (fully-associative)

• Replacement is usually LRU (since the miss penalty is
huge, we can invest some effort to minimize misses)

• A page table (indexed by virtual page number) is used for
translating virtual to physical page number

• The page table is itself in memory

5

TLB

• Since the number of pages is very high, the page table
capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
may not even be found in the cache – two expensive
memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
increases memory waste

6

TLB and Cache

• Is the cache indexed with virtual or physical address?
 To index with a physical address, we will have to first

look up the TLB, then the cache  longer access time
 Multiple virtual addresses can map to the same

physical address – must ensure that these
different virtual addresses will map to the same
location in cache – else, there will be two different
copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
 Since multiple virtual addresses can map to the same

physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present

7

Cache and TLB Pipeline

TLB

Virtual address

Tag array Data array

Physical tag comparion

Virtual page number Virtual
index

Offset

Physical page number

Physical tag

Virtually Indexed; Physically Tagged Cache

8

Bad Events

• Consider the longest latency possible for a load instruction:
 TLB miss: must look up page table to find translation for v.page P
 Calculate the virtual memory address for the page table entry

that has the translation for page P – let’s say, this is v.page Q
 TLB miss for v.page Q: will require navigation of a hierarchical

page table (let’s ignore this case for now and assume we have
succeeded in finding the physical memory location (R) for page Q)
 Access memory location R (find this either in L1, L2, or memory)
We now have the translation for v.page P – put this into the TLB
We now have a TLB hit and know the physical page number – this

allows us to do tag comparison and check the L1 cache for a hit
 If there’s a miss in L1, check L2 – if that misses, check in memory
 At any point, if the page table entry claims that the page is on disk,
flag a page fault – the OS then copies the page from disk to memory
and the hardware resumes what it was doing before the page fault
… phew!

9

Multiprocessor Taxonomy

• SISD: single instruction and single data stream: uniprocessor

• MISD: no commercial multiprocessor: imagine data going
through a pipeline of execution engines

• SIMD: vector architectures: lower flexibility

• MIMD: most multiprocessors today: easy to construct with
off-the-shelf computers, most flexibility

10

Memory Organization - I

• Centralized shared-memory multiprocessor or
Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
memory – since all processors see the same memory
organization  uniform memory access (UMA)

• Shared-memory because all processors can access the
entire memory address space

• Can centralized memory emerge as a bandwidth
bottleneck? – not if you have large caches and employ
fewer than a dozen processors

11

SMPs or Centralized Shared-Memory

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

12

Memory Organization - II

• For higher scalability, memory is distributed among
processors  distributed memory multiprocessors

• If one processor can directly address the memory local
to another processor, the address space is shared 
distributed shared-memory (DSM) multiprocessor

• If memories are strictly local, we need messages to
communicate data  cluster of computers or multicomputers

• Non-uniform memory architecture (NUMA) since local
memory has lower latency than remote memory

13

Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

14

SMPs

• Centralized main memory and many caches  many
copies of the same data

• A system is cache coherent if a read returns the most
recently written value for that word

Time Event Value of X in Cache-A Cache-B Memory
0 - - 1
1 CPU-A reads X 1 - 1
2 CPU-B reads X 1 1 1
3 CPU-A stores 0 in X 0 1 0

15

Cache Coherence

A memory system is coherent if:
• P writes to X; no other processor writes to X; P reads X
and receives the value previously written by P

• P1 writes to X; no other processor writes to X; sufficient
time elapses; P2 reads X and receives value written by P1

• Two writes to the same location by two processors are
seen in the same order by all processors – write serialization

• The memory consistency model defines “time elapsed”
before the effect of a processor is seen by others

16

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

Write-update: when a processor writes, it updates other
shared copies of that block

17

Design Issues

• Three states for a block: invalid, shared, modified
• A write is placed on the bus and sharers invalidate themselves

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

18

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

