
1

Lecture 15: Recap

• Today’s topics:

 Recap for mid-term

2

Modern Trends

• Historical contributions to performance:
 Better processes (faster devices) ~20%
 Better circuits/pipelines ~15%
 Better organization/architecture ~15%

Today, annual improvement is closer to 20%; this is primarily
because of slowly increasing transistor count and more cores.

Need multi-thread parallelism to boost performance every year.

3

Performance Measures

• Performance = 1 / execution time
• Speedup = ratio of performance
• Performance improvement = speedup -1
• Execution time = clock cycle time x CPI x number of instrs

Program takes 100 seconds on ProcA and 150 seconds on ProcB

Speedup of A over B = 150/100 = 1.5
Performance improvement of A over B = 1.5 – 1 = 0.5 = 50%

Speedup of B over A = 100/150 = 0.66 (speedup less than 1 means
performance went down)

Performance improvement of B over A = 0.66 – 1 = -0.33 = -33%
or Performance degradation of B, relative to A = 33%

If multiple programs are executed, the execution times are combined
into a single number using AM, weighted AM, or GM

4

Performance Equations

CPU execution time = CPU clock cycles x Clock cycle time

CPU clock cycles = number of instrs x avg clock cycles
per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time x number of instrs x avg CPI

If a 2 GHz processor graduates an instruction every third cycle,
how many instructions are there in a program that runs for
10 seconds?

5

Power Consumption

• Dyn power α activity x capacitance x voltage2 x frequency

• Capacitance per transistor and voltage are decreasing,
but number of transistors and frequency are increasing at
a faster rate

• Leakage power is also rising and will soon match dynamic
power

• Power consumption is already around 100W in
some high-performance processors today

6

Basic MIPS Instructions

• lw $t1, 16($t2)
• add $t3, $t1, $t2
• addi $t3, $t3, 16
• sw $t3, 16($t2)
• beq $t1, $t2, 16
• blt is implemented as slt and bne
• j 64
• jr $t1
• sll $t1, $t1, 2

Convert to assembly:
while (save[i] == k)

i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit:

7

Registers

• The 32 MIPS registers are partitioned as follows:

 Register 0 : $zero always stores the constant 0
 Regs 2-3 : $v0, $v1 return values of a procedure
 Regs 4-7 : $a0-$a3 input arguments to a procedure
 Regs 8-15 : $t0-$t7 temporaries
 Regs 16-23: $s0-$s7 variables
 Regs 24-25: $t8-$t9 more temporaries
 Reg 28 : $gp global pointer
 Reg 29 : $sp stack pointer
 Reg 30 : $fp frame pointer
 Reg 31 : $ra return address

8

Memory Organization

Stack

Dynamic data (heap)
Static data (globals)

Text (instructions)

Proc A’s values

Proc B’s values

Proc C’s values
…

High address

Low address
Stack grows

this way

$fp

$sp
$gp

9

Procedure Calls/Returns

procA
{

int j;
j = …;
call procB(j);
… = j;

}

procB (int j)
{

int k;
… = j;
k = …;
return k;

}

procA:
$s0 = … # value of j
$t0 = … # some tempval
$a0 = $s0 # the argument
…
jal procB
…
… = $v0

procB:
$t0 = … # some tempval
… = $a0 # using the argument
$s0 = … # value of k
$v0 = $s0;
jr $ra

10

Saves and Restores

• Caller saves:
 $ra, $a0, $t0, $fp

• Callee saves:
 $s0

procA:
$s0 = … # value of j
$t0 = … # some tempval
$a0 = $s0 # the argument
…
jal procB
…
… = $v0

procB:
$t0 = … # some tempval
… = $a0 # using the argument
$s0 = … # value of k
$v0 = $s0;
jr $ra

• As every element is saved on stack,
the stack pointer is decremented

11

Example 2

int fact (int n)
{

if (n < 1) return (1);
else return (n * fact(n-1));

}

fact:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
slti $t0, $a0, 1
beq $t0, $zero, L1
addi $v0, $zero, 1
addi $sp, $sp, 8
jr $ra

L1:
addi $a0, $a0, -1
jal fact
lw $a0, 0($sp)
lw $ra, 4($sp)
addi $sp, $sp, 8
mul $v0, $a0, $v0
jr $ra

Notes:
The caller saves $a0 and $ra
in its stack space.
Temps are never saved.

12

Recap – Numeric Representations

• Decimal 3510 = 3 x 101 + 5 x 100

• Binary 001000112 = 1 x 25 + 1 x 21 + 1 x 20

• Hexadecimal (compact representation)
0x 23 or 23hex = 2 x 161 + 3 x 160

0-15 (decimal) 0-9, a-f (hex)

Dec Binary Hex
0 0000 00
1 0001 01
2 0010 02
3 0011 03

Dec Binary Hex
4 0100 04
5 0101 05
6 0110 06
7 0111 07

Dec Binary Hex
8 1000 08
9 1001 09

10 1010 0a
11 1011 0b

Dec Binary Hex
12 1100 0c
13 1101 0d
14 1110 0e
15 1111 0f

13

2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Note that the sum of a number x and its inverted representation x’ always
equals a string of 1s (-1).

x + x’ = -1
x’ + 1 = -x … hence, can compute the negative of a number by
-x = x’ + 1 inverting all bits and adding 1

This format can directly undergo addition without any conversions!
Each number represents the quantity

x31 -231 + x30 230 + x29 229 + … + x1 21 + x0 20

14

Multiplication Example

Multiplicand 1000ten
Multiplier x 1001ten

1000

0000
0000

1000

Product 1001000ten

In every step
• multiplicand is shifted
• next bit of multiplier is examined (also a shifting step)
• if this bit is 1, shifted multiplicand is added to the product

15

Division

1001ten Quotient
Divisor 1000ten | 1001010ten Dividend

-1000
10
101
1010
-1000

10ten Remainder

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient

16

Division

1001ten Quotient
Divisor 1000ten | 1001010ten Dividend

0001001010 0001001010 0000001010 0000001010
100000000000 0001000000 00001000000000001000
Quo: 0 000001 0000010 000001001

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient

17

Divide Example

• Divide 7ten (0000 0111two) by 2ten (0010two)

Iter Step Quot Divisor Remainder
0 Initial values 0000 0010 0000 0000 0111
1 Rem = Rem – Div

Rem < 0 +Div, shift 0 into Q
Shift Div right

0000
0000
0000

0010 0000
0010 0000
0001 0000

1110 0111
0000 0111
0000 0111

2 Same steps as 1 0000
0000
0000

0001 0000
0001 0000
0000 1000

1111 0111
0000 0111
0000 0111

3 Same steps as 1 0000 0000 0100 0000 0111
4 Rem = Rem – Div

Rem >= 0 shift 1 into Q
Shift Div right

0000
0001
0001

0000 0100
0000 0100
0000 0010

0000 0011
0000 0011
0000 0011

5 Same steps as 4 0011 0000 0001 0000 0001

18

Binary FP Numbers

• 20.45 decimal = ? Binary

• 20 decimal = 10100 binary

• 0.45 x 2 = 0.9 (not greater than 1, first bit after binary point is 0)
0.90 x 2 = 1.8 (greater than 1, second bit is 1, subtract 1 from 1.8)
0.80 x 2 = 1.6 (greater than 1, third bit is 1, subtract 1 from 1.6)
0.60 x 2 = 1.2 (greater than 1, fourth bit is 1, subtract 1 from 1.2)
0.20 x 2 = 0.4 (less than 1, fifth bit is 0)
0.40 x 2 = 0.8 (less than 1, sixth bit is 0)
0.80 x 2 = 1.6 (greater than 1, seventh bit is 1, subtract 1 from 1.6)

… and the pattern repeats

10100.011100110011001100…
Normalized form = 1.0100011100110011… x 24

19

IEEE 754 Format

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent -0.75ten in single and double-precision formats

Single: (1 + 8 + 23)
1 0111 1110 1000…000

Double: (1 + 11 + 52)
1 0111 1111 110 1000…000

• What decimal number is represented by the following
single-precision number?
1 1000 0001 01000…0000

-5.0

20

FP Addition

• Consider the following decimal example (can maintain
only 4 decimal digits and 2 exponent digits)

9.999 x 101 + 1.610 x 10-1

Convert to the larger exponent:
9.999 x 101 + 0.016 x 101

Add
10.015 x 101

Normalize
1.0015 x 102

Check for overflow/underflow
Round
1.002 x 102

Re-normalize

21

Boolean Algebra

A B C E
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

(A . B . C) + (A . C . B) + (C . B . A)

• Can also use “product of sums”
• Any equation can be implemented
with an array of ANDs, followed by
an array of ORs

• A + B = A . B

• A . B = A + B
Any truth table can be expressed
as a sum of products

22

Adder Implementations

• Ripple-Carry adder – each 1-bit adder feeds its carry-out to next stage –
simple design, but we must wait for the carry to propagate thru all bits

• Carry-Lookahead adder – each bit can be represented by an equation
that only involves input bits (ai, bi) and initial carry-in (c0) -- this is a
complex equation, so it’s broken into sub-parts

For bits ai, bi,, and ci, a carry is generated if ai.bi = 1 and a carry is
propagated if ai + bi = 1

Ci+1 = gi + pi . Ci

Similarly, compute these values for a block of 4 bits, then for a block
of 16 bits, then for a block of 64 bits….Finally, the carry-out for the
64th bit is represented by an equation such as this:
C4 = G3+ G2.P3 + G1.P2.P3 + G0.P1.P2.P3 + C0.P0.P1.P2.P3

Each of the sub-terms is also a similar expression

23

32-bit ALU

Source: H&P textbook

24

Control Lines

What are the values
of the control lines

and what operations
do they correspond to?

Ai Bn Op
AND 0 0 00
OR 0 0 01
Add 0 0 10
Sub 0 1 10
SLT 0 1 11
NOR 1 1 00

Source: H&P textbook

25

State Transition Table

• Problem description: A traffic light with only green and red; either the
North-South road has green or the East-West road has green (both
can’t be red); there are detectors on the roads to indicate if a car is
on the road; the lights are updated every 30 seconds; a light must
change only if a car is waiting on the other road

State Transition Table:
CurrState InputEW InputNS NextState=Output

N 0 0 N
N 0 1 N
N 1 0 E
N 1 1 E
E 0 0 E
E 0 1 N
E 1 0 E
E 1 1 N

26

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

