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Lecture 15: Recap

• Today’s topics: 

 Recap for mid-term
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Modern Trends

• Historical contributions to performance:
 Better processes (faster devices) ~20%
 Better circuits/pipelines ~15%
 Better organization/architecture ~15%

Today, annual improvement is closer to 20%; this is primarily
because of slowly increasing transistor count and more cores.

Need multi-thread parallelism to boost performance every year.
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Performance Measures

• Performance = 1 / execution time
• Speedup = ratio of performance
• Performance improvement = speedup -1
• Execution time = clock cycle time x CPI x number of instrs

Program takes 100 seconds on ProcA  and 150 seconds on ProcB

Speedup of A over B = 150/100  = 1.5
Performance improvement of A over B = 1.5 – 1 = 0.5 = 50%

Speedup of B over A = 100/150 = 0.66   (speedup less than 1 means
performance went down)

Performance improvement of B over A = 0.66 – 1 = -0.33 = -33%
or Performance degradation of B, relative to A = 33%

If multiple programs are executed, the execution times are combined
into a single number using AM, weighted AM, or GM
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Performance Equations

CPU execution time = CPU clock cycles  x  Clock cycle time

CPU clock cycles = number of instrs x  avg clock cycles
per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time x number of instrs x avg CPI

If a 2 GHz processor graduates an instruction every third cycle,
how many instructions are there in a program that runs for
10 seconds?
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Power Consumption

• Dyn power  α activity x capacitance x voltage2 x frequency

• Capacitance per transistor and voltage are decreasing,
but number of transistors and frequency are increasing at
a faster rate

• Leakage power is also rising and will soon match dynamic
power

• Power consumption is already around 100W in
some high-performance processors today
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Basic MIPS Instructions

• lw      $t1, 16($t2)
• add   $t3, $t1, $t2
• addi  $t3, $t3, 16
• sw     $t3, 16($t2)
• beq   $t1, $t2, 16
• blt  is implemented as  slt and bne
• j         64
• jr        $t1
• sll      $t1, $t1, 2

Convert to assembly:
while   (save[i] == k)

i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

Loop:  sll      $t1, $s3, 2
add    $t1, $t1, $s6
lw      $t0, 0($t1)
bne    $t0, $s5, Exit
addi   $s3, $s3, 1
j         Loop

Exit:
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Registers

• The 32 MIPS registers are partitioned as follows:

 Register 0 :  $zero        always stores the constant 0
 Regs 2-3   :  $v0, $v1   return values of a procedure
 Regs 4-7   :  $a0-$a3   input arguments to a procedure
 Regs 8-15 :  $t0-$t7     temporaries
 Regs 16-23: $s0-$s7    variables
 Regs 24-25: $t8-$t9     more temporaries
 Reg   28     : $gp          global pointer
 Reg   29     : $sp           stack pointer
 Reg   30     : $fp            frame pointer
 Reg   31     : $ra           return address 
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Memory Organization

Stack

Dynamic data (heap)
Static data (globals)

Text (instructions)

Proc A’s  values

Proc B’s  values

Proc C’s  values
…

High address

Low address
Stack grows

this way

$fp

$sp
$gp
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Procedure Calls/Returns

procA
{

int j;
j = …;
call procB(j);
… = j;

}

procB (int j)
{

int k;
… = j;
k = …;
return k;

}

procA:
$s0 = … # value of j
$t0  = … # some tempval
$a0 = $s0  # the argument
…
jal  procB
…
… = $v0

procB:
$t0  = … # some tempval
… = $a0 # using the argument
$s0 = … # value of k
$v0 = $s0;
jr   $ra



10

Saves and Restores

• Caller saves:
 $ra, $a0, $t0, $fp

• Callee saves:
 $s0

procA:
$s0 = … # value of j
$t0  = … # some tempval
$a0 = $s0  # the argument
…
jal  procB
…
… = $v0

procB:
$t0  = … # some tempval
… = $a0 # using the argument
$s0 = … # value of k
$v0 = $s0;
jr   $ra

• As every element is saved on stack,
the stack pointer is decremented
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Example 2

int   fact  (int n)
{

if (n < 1)  return (1);
else return (n * fact(n-1));

}

fact:
addi      $sp, $sp, -8
sw        $ra, 4($sp)
sw        $a0, 0($sp)
slti        $t0, $a0, 1
beq      $t0, $zero, L1
addi   $v0, $zero, 1
addi   $sp, $sp, 8
jr        $ra

L1:
addi     $a0, $a0, -1
jal        fact
lw        $a0, 0($sp)
lw        $ra, 4($sp)
addi     $sp, $sp, 8
mul      $v0, $a0, $v0
jr          $ra

Notes:
The caller saves $a0 and $ra
in its stack space.
Temps are never saved.



12

Recap – Numeric Representations

• Decimal        3510  =  3 x 101 + 5 x 100

• Binary          001000112  =  1 x 25 +  1 x 21 +  1 x 20

• Hexadecimal (compact representation)
0x 23    or   23hex     =   2 x 161 +  3 x 160

0-15 (decimal)    0-9, a-f  (hex)

Dec  Binary  Hex
0    0000     00
1    0001     01
2    0010     02
3    0011     03

Dec  Binary  Hex
4    0100     04
5    0101     05
6    0110     06
7    0111     07

Dec  Binary  Hex
8    1000     08
9    1001     09

10    1010     0a
11    1011     0b

Dec  Binary  Hex
12    1100     0c
13    1101     0d
14    1110     0e
15    1111     0f
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2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)   
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Note that the sum of a number x and its inverted representation x’ always
equals  a string of 1s (-1).

x + x’ = -1
x’ + 1 = -x        … hence, can compute the negative of a number by
-x = x’ + 1             inverting all bits and adding 1

This format can directly undergo addition without any conversions!
Each number represents the quantity

x31 -231 +  x30 230 + x29 229 + … + x1 21 + x0 20
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Multiplication Example

Multiplicand 1000ten
Multiplier x    1001ten

---------------
1000

0000
0000

1000
----------------

Product 1001000ten

In every step
• multiplicand is shifted
• next bit of multiplier is examined (also a shifting step)
• if this bit is 1, shifted multiplicand is added to the product
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Division

1001ten Quotient
Divisor 1000ten |     1001010ten Dividend

-1000
10
101
1010
-1000

10ten Remainder

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient
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Division

1001ten Quotient
Divisor 1000ten |     1001010ten Dividend

0001001010        0001001010      0000001010    0000001010
100000000000  0001000000 00001000000000001000
Quo:   0                   000001               0000010           000001001

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient
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Divide Example

• Divide 7ten (0000 0111two)  by  2ten (0010two)

Iter Step Quot Divisor Remainder
0 Initial values 0000 0010 0000 0000 0111
1 Rem = Rem – Div

Rem < 0  +Div, shift 0 into Q
Shift Div right

0000
0000
0000

0010 0000
0010 0000
0001 0000

1110 0111
0000 0111
0000 0111

2 Same steps as 1 0000
0000
0000

0001 0000
0001 0000
0000 1000

1111 0111
0000 0111
0000 0111

3 Same steps as 1 0000 0000 0100 0000 0111
4 Rem = Rem – Div 

Rem >= 0  shift 1 into Q
Shift Div right

0000
0001
0001

0000 0100
0000 0100
0000 0010

0000 0011
0000 0011
0000 0011

5 Same steps as 4 0011 0000 0001 0000 0001
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Binary FP Numbers

• 20.45 decimal = ? Binary

• 20 decimal = 10100 binary

• 0.45 x 2 = 0.9     (not greater than 1, first bit after binary point is 0)
0.90 x 2 = 1.8      (greater than 1, second bit is 1, subtract 1 from 1.8)
0.80 x 2 = 1.6      (greater than 1, third bit is 1, subtract 1 from 1.6)
0.60 x 2 = 1.2      (greater than 1, fourth bit is 1, subtract 1 from 1.2)
0.20 x 2 = 0.4      (less than 1, fifth bit is 0)
0.40 x 2 = 0.8      (less than 1, sixth bit is 0)
0.80 x 2 = 1.6      (greater than 1, seventh bit is 1, subtract 1 from 1.6)

… and the pattern repeats

10100.011100110011001100…
Normalized form = 1.0100011100110011…  x 24
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IEEE 754 Format

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  -0.75ten in single and double-precision formats

Single:  (1 + 8 + 23)
1   0111 1110  1000…000

Double: (1 + 11 + 52)
1   0111 1111 110    1000…000

• What decimal number is represented by the following
single-precision number?
1   1000 0001    01000…0000

-5.0
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FP Addition

• Consider the following decimal example (can maintain
only 4 decimal digits and 2 exponent digits)

9.999  x 101 +     1.610 x 10-1

Convert to the larger exponent:
9.999  x 101 +     0.016 x 101

Add
10.015  x 101

Normalize
1.0015  x 102

Check for overflow/underflow
Round
1.002  x 102

Re-normalize
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Boolean Algebra

A        B        C               E
0            0            0                     0
0            0            1                     0
0            1            0                     0
0            1            1                     1
1            0            0                     0
1            0            1                     1
1            1            0                     1
1            1            1                     0

(A . B . C) + (A . C . B) + (C . B . A)

• Can also use “product of sums”
• Any equation can be implemented
with an array of ANDs, followed by
an array of ORs

• A + B = A . B

• A . B  =  A + B
Any truth table can be expressed
as a sum of products
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Adder Implementations

• Ripple-Carry adder – each 1-bit adder feeds its carry-out to next stage –
simple design, but we must wait for the carry to propagate thru all bits

• Carry-Lookahead adder – each bit can be represented by an equation
that only involves input bits (ai, bi) and initial carry-in (c0)  -- this is a
complex equation, so it’s broken into sub-parts

For bits ai, bi,, and ci, a carry is generated if   ai.bi = 1   and a carry is
propagated if  ai + bi = 1

Ci+1 = gi + pi . Ci

Similarly, compute these values for a block of 4 bits, then for a block
of 16 bits, then for a block of 64 bits….Finally, the carry-out for the
64th bit is represented by an equation such as this:
C4 = G3+ G2.P3 + G1.P2.P3 + G0.P1.P2.P3 + C0.P0.P1.P2.P3

Each of the sub-terms is also a similar expression
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32-bit ALU

Source: H&P textbook
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Control Lines

What are the values
of the control lines

and what operations
do they correspond to?

Ai   Bn   Op
AND     0     0     00
OR       0     0     01
Add      0     0     10
Sub      0     1     10
SLT      0     1     11
NOR     1     1     00

Source: H&P textbook
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State Transition Table

• Problem description: A traffic light with only green and red; either the
North-South road has green or the East-West road has green (both
can’t be red); there are detectors on the roads to indicate if a car is
on the road; the lights are updated every 30 seconds; a light must
change only if a car is waiting on the other road

State Transition Table:
CurrState       InputEW    InputNS            NextState=Output

N                    0                0                             N
N                    0                1                             N
N                    1                0                             E
N                    1                1                             E
E                    0                0                             E
E                    0                1                             N
E                    1                0                             E
E                    1                1                             N
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Title

• Bullet
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