Lecture 15: Recap

- Today's topics:
 - Recap for mid-term

- Historical contributions to performance:
 - Better processes (faster devices) ~20%
 - Better circuits/pipelines ~15%
 - Better organization/architecture ~15%

Today, annual improvement is closer to 20%; this is primarily because of slowly increasing transistor count and more cores.

Need multi-thread parallelism to boost performance every year.

Performance Measures

- Performance = 1 / execution time
- Speedup = ratio of performance
- Performance improvement = speedup -1
- Execution time = clock cycle time x CPI x number of instrs

Program takes 100 seconds on ProcA and 150 seconds on ProcB

Speedup of A over B = 150/100 = 1.5Performance improvement of A over B = 1.5 - 1 = 0.5 = 50%

Speedup of B over A = 100/150 = 0.66 (speedup less than 1 means performance went down) Performance improvement of B over A = 0.66 - 1 = -0.33 = -33%or Performance degradation of B, relative to A = 33%

If multiple programs are executed, the execution times are combined into a single number using AM, weighted AM, or GM 3

CPU execution time = CPU clock cycles x Clock cycle time

CPU clock cycles = number of instrs x avg clock cycles per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time x number of instrs x avg CPI

If a 2 GHz processor graduates an instruction every third cycle, how many instructions are there in a program that runs for 10 seconds?

- Dyn power α activity x capacitance x voltage² x frequency
- Capacitance per transistor and voltage are decreasing, but number of transistors and frequency are increasing at a faster rate
- Leakage power is also rising and will soon match dynamic power
- Power consumption is already around 100W in some high-performance processors today

Basic MIPS Instructions

- lw \$t1, 16(\$t2)
- add \$t3, \$t1, \$t2
- addi \$t3, \$t3, 16
- sw \$t3, 16(\$t2)
- beq \$t1, \$t2, 16
- blt is implemented as slt and bne
- j 64
- jr \$t1
- sll \$t1, \$t1, 2

Convert to assembly: while (save[i] == k) i += 1;

i and k are in \$s3 and \$s5 and base of array save[] is in \$s6

Loop:	sll	\$t1, \$s3, 2
	add	\$t1, \$t1, \$s6
	lw	\$t0, 0(\$t1)
	bne	\$t0, \$s5, Exit
	addi	\$s3, \$s3, 1
	j	Loop
Exit:		6

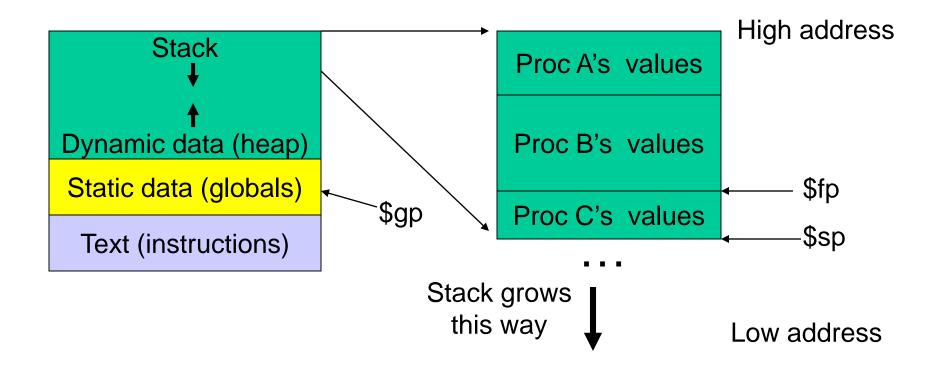
Registers

• The 32 MIPS registers are partitioned as follows:

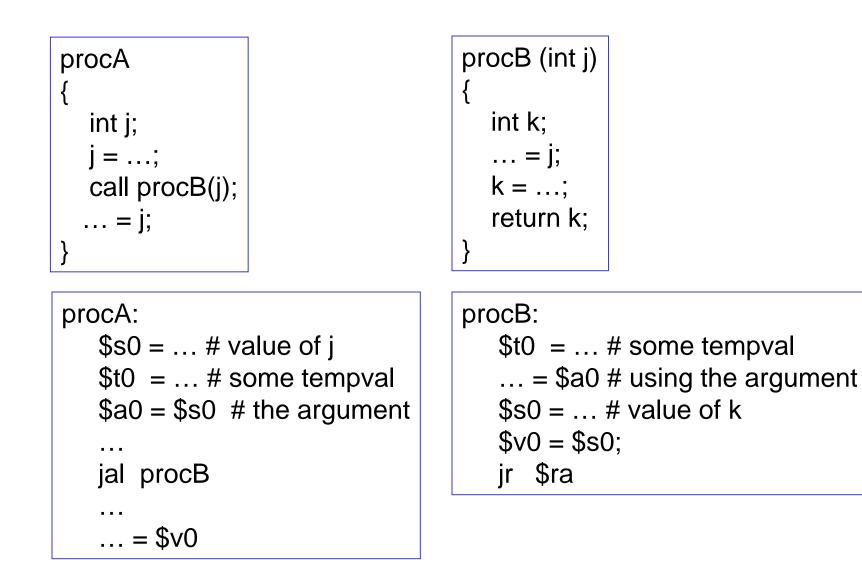
Register 0 : \$zero Regs 2-3 : \$v0, \$v1 Regs 4-7 : \$a0-\$a3 Regs 8-15 : \$t0-\$t7 Regs 16-23: \$s0-\$s7 Regs 24-25: \$t8-\$t9 Reg 28 : \$gp • Reg 29 : \$sp • Reg 30 : \$fp Reg 31 : \$ra

always stores the constant 0 return values of a procedure input arguments to a procedure temporaries variables more temporaries global pointer stack pointer frame pointer return address

Memory Organization



Procedure Calls/Returns



Saves and Restores

- Caller saves:
 \$ra, \$a0, \$t0, \$fp
- Callee saves:\$s0

 As every element is saved on stack, the stack pointer is decremented

procA:

```
$s0 = ... # value of j

$t0 = ... # some tempval

$a0 = $s0 # the argument

...

jal procB

...

... = $v0
```

procB:

\$t0 = ... # some tempval ... = \$a0 # using the argument \$s0 = ... # value of k \$v0 = \$s0; jr \$ra

Example 2

```
int fact (int n)
```

```
if (n < 1) return (1);
else return (n * fact(n-1));
```

Notes:

{

The caller saves \$a0 and \$ra in its stack space. Temps are never saved.

fact:	
addi	\$sp, \$sp, -8
SW	\$ra, 4(\$sp)
SW	\$a0, 0(\$sp)
slti	\$t0, \$a0, 1
beq	\$t0, \$zero, L1
addi	\$v0, \$zero, 1
addi	\$sp, \$sp, 8
jr	\$ra
L1:	
addi	\$a0, \$a0, -1
jal	fact
lw	\$a0, 0(\$sp)
lw	\$ra, 4(\$sp)
addi	\$sp, \$sp, 8
mul	\$v0, \$a0, \$v0
jr	\$ra

Recap – Numeric Representations

- Decimal $35_{10} = 3 \times 10^1 + 5 \times 10^0$
- Binary $00100011_2 = 1 \times 2^5 + 1 \times 2^1 + 1 \times 2^0$
- Hexadecimal (compact representation) 0x 23 or $23_{hex} = 2 \times 16^1 + 3 \times 16^0$

0-15 (decimal) \rightarrow 0-9, a-f (hex)

Dec	Binary	Hex									
0	0000	00	4	0100	04	8	1000	80	12	1100	0c
1	0001	01	5	0101	05	9	1001	09	13	1101	0d
2	0010	02	6	0110	06	10	1010	0a	14	1110	0e
3	0011	03	7	0111	07	11	1011	0b	15	1111	Of
											12

1

2's Complement

```
\begin{array}{l} 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ _{two} = 0_{ten} \\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ _{two} = 1_{ten} \\ \dots \\ 0111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ _{two} = 2^{31} - 1 \\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ _{two} = -2^{31} \\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ _{two} = -(2^{31} - 1) \\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ _{two} = -(2^{31} - 1) \\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 000\ 000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 00\ 000\ 000\ 000\ 000\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\
```

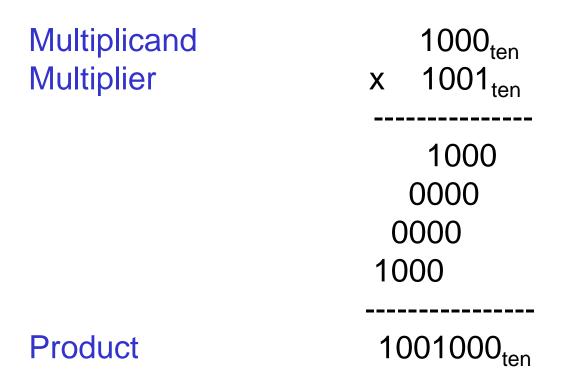
Note that the sum of a number x and its inverted representation x' always equals a string of 1s (-1).

$$x + x' = -1$$
 $x' + 1 = -x$ $-x = x' + 1$... hence, can compute the negative of a number byinverting all bits and adding 1

This format can directly undergo addition without any conversions! Each number represents the quantity

 $x_{31} - 2^{31} + x_{30} 2^{30} + x_{29} 2^{29} + ... + x_1 2^1 + x_0 2^0$

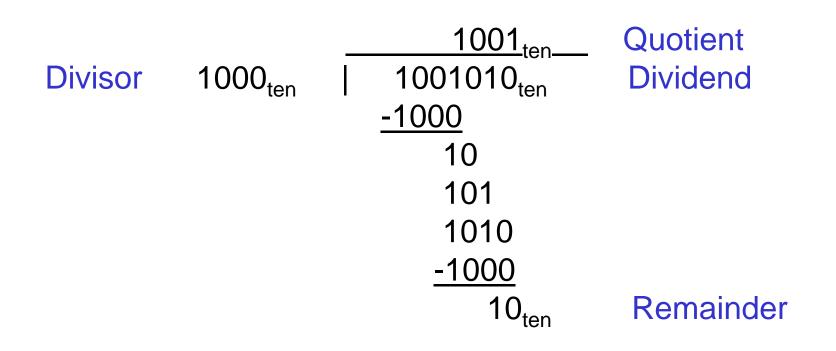
Multiplication Example



In every step

- multiplicand is shifted
- next bit of multiplier is examined (also a shifting step)
- if this bit is 1, shifted multiplicand is added to the product

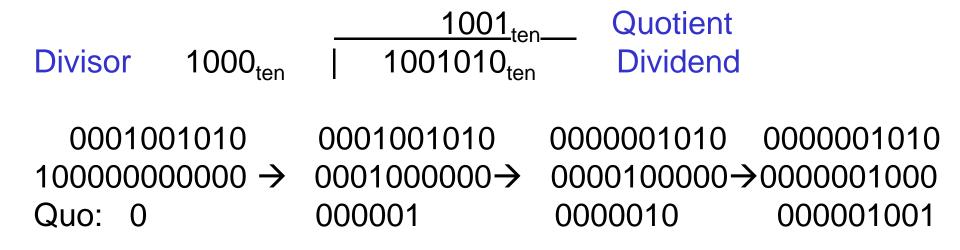
Division



At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

Division



At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

• Divide $7_{ten} (0000 \ 0111_{two})$ by $2_{ten} (0010_{two})$

lter	Step	Quot	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	Rem = Rem – Div	0000	0010 0000	1110 0111
	Rem < 0 ➔ +Div, shift 0 into Q	0000	0010 0000	0000 0111
	Shift Div right	0000	0001 0000	0000 0111
2	Same steps as 1	0000	0001 0000	1111 0111
		0000	0001 0000	0000 0111
		0000	0000 1000	0000 0111
3	Same steps as 1	0000	0000 0100	0000 0111
4	Rem = Rem – Div	0000	0000 0100	0000 0011
	Rem >= 0 ➔ shift 1 into Q	0001	0000 0100	0000 0011
	Shift Div right	0001	0000 0010	0000 0011
5	Same steps as 4	0011	0000 0001	0000 0001

- 20.45 decimal = ? Binary
- 20 decimal = 10100 binary
- $0.45 \times 2 = 0.9$ (not greater than 1, first bit after binary point is 0) $0.90 \times 2 = 1.8$ (greater than 1, second bit is 1, subtract 1 from 1.8) $0.80 \times 2 = 1.6$ (greater than 1, third bit is 1, subtract 1 from 1.6) $0.60 \times 2 = 1.2$ (greater than 1, fourth bit is 1, subtract 1 from 1.2) $0.20 \times 2 = 0.4$ (less than 1, fifth bit is 0) $0.40 \times 2 = 0.8$ (less than 1, sixth bit is 0) $0.80 \times 2 = 1.6$ (greater than 1, seventh bit is 1, subtract 1 from 1.6) ... and the pattern repeats

10100.011100110011001100... Normalized form = $1.0100011100110011... \times 2^4$ Final representation: (-1)^S x (1 + Fraction) x 2^(Exponent - Bias)

• Represent -0.75_{ten} in single and double-precision formats

```
Single: (1 + 8 + 23)
1 0111 1110 1000...000
```

```
Double: (1 + 11 + 52)
1 0111 1111 110 1000...000
```

• What decimal number is represented by the following single-precision number?

1 1000 0001 01000...0000

 Consider the following decimal example (can maintain only 4 decimal digits and 2 exponent digits)

 $9.999 \times 10^{1} + 1.610 \times 10^{-1}$ Convert to the larger exponent: $9.999 \times 10^1 + 0.016 \times 10^1$ Add 10.015 x 10¹ Normalize 1.0015×10^2 Check for overflow/underflow Round 1.002×10^2 **Re-normalize**

Boolean Algebra

•
$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

•
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Α	В	С	E
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Any truth table can be expressed as a sum of products

 $(A \cdot B \cdot \overline{C}) + (A \cdot C \cdot \overline{B}) + (C \cdot B \cdot \overline{A})$

- Can also use "product of sums"
- Any equation can be implemented with an array of ANDs, followed by an array of ORs

- Ripple-Carry adder each 1-bit adder feeds its carry-out to next stage simple design, but we must wait for the carry to propagate thru all bits
- Carry-Lookahead adder each bit can be represented by an equation that only involves input bits (a_i, b_i) and initial carry-in (c₀) -- this is a complex equation, so it's broken into sub-parts

```
For bits a_i, b_i, and c_i, a carry is generated if a_i \cdot b_i = 1 and a carry is propagated if a_i + b_i = 1

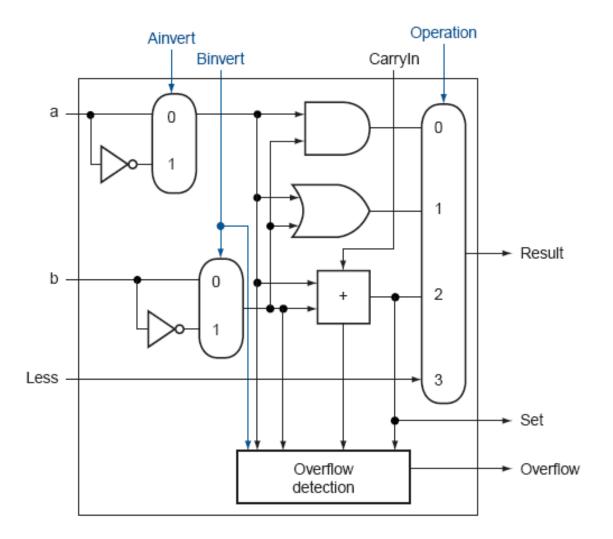
C_{i+1} = g_i + p_i \cdot C_i
```

Similarly, compute these values for a block of 4 bits, then for a block of 16 bits, then for a block of 64 bits....Finally, the carry-out for the 64th bit is represented by an equation such as this:

 $C_4 = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + C_0 P_0 P_1 P_2 P_3$

Each of the sub-terms is also a similar expression

32-bit ALU

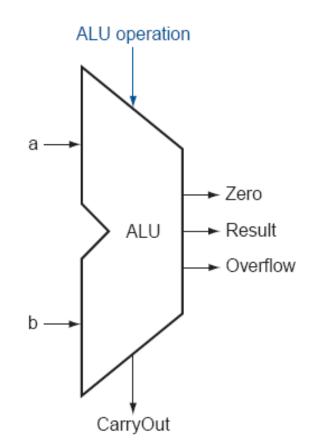


23

Control Lines

What are the values of the control lines and what operations do they correspond to?

	Ai	Bn	Ор
AND	0	0	00
OR	0	0	01
Add	0	0	10
Sub	0	1	10
SLT	0	1	11
NOR	1	1	00



 Problem description: A traffic light with only green and red; either the North-South road has green or the East-West road has green (both can't be red); there are detectors on the roads to indicate if a car is on the road; the lights are updated every 30 seconds; a light must change only if a car is waiting on the other road

State Transition	Table:		
CurrState	InputEW	InputNS	NextState=Output
Ν	0	0	Ν
Ν	0	1	Ν
Ν	1	0	E
Ν	1	1	E
E	0	0	E
E	0	1	Ν
E	1	0	E
E	1	1	Ν

Bullet