Lecture 13: Sequential Circuits, FSM

e Today’s topics:

= Sequential circuits
* Finite state machines
= Single-cycle CPU

 Reminder: midterm on Tue 10/20
= will cover Chapters 1-3, App A, B
= if you understand all slides, assignments, you will
ace 90% of the test

Sequential Circults

 Until now, circuits were combinational — when inputs change, the
outputs change after a while (time = logic delay thru circuit)

Inputs Outputs

* We want the clock to act like a start and stop signal — a “latch” is
a storage device that separates these circuits — it ensures that
the inputs to the circuit do not change during a clock cycle

Clock Clock
! !

Outputs

Inputs—

Latch Latch

Sequential Circults

» Sequential circuit: consists

A

of combinational circuit and 1
a storage element Inputs =
Clock —
* At the start of the clock Inputs —

cycle, the rising edge
causes the “state” storage
to store some input values

 This state will not change for an entire cycle (until next rising edge)

* The combinational circuit has some time to accept the value
of “state” and “inputs” and produce “outputs”

« Some of the outputs (for example, the value of next “state”) may feed
back (but through the latch so they’re only seen in the next cycle)

Designing a Latch

* An S-R latch: set-reset latch
When Set is high, a 1 is stored
When Reset is high, a 0 is stored
When both are low, the previous state is preserved (hence,
known as a storage or memory element)
When both are high, the output is unstable — this set of inputs
IS therefore not allowed

Verify the above behavior! Q

Q

Source: H&P textbook

D Latch

* Incorporates a clock

* The value of the input D signal (data) is stored only when the clock
IS high — the previous state is preserved when the clock is low

C -

T L

|
N

Source: H&P textbook

D Flip Flop

» Terminology:
Latch: outputs can change any time the clock is high (asserted)

Flip flop: outputs can change only on a clock edge

* Two D latches in series — ensures that a value is stored only on
the falling edge of the clock

latch latch

Ql

Source: H&P textbook

Finite State Machine

* A sequential circuit is described by a variation of a truth
table — a finite state diagram (hence, the circuit is also
called a finite state machine)

* Note that state is updated only on a clock edge

Next
State

L Current
! State

Outputs
Inputs >

Clock

State Diagrams

» Each state i1s shown with a circle, labeled with the state
value — the contents of the circle are the outputs

* An arc represents a transition to a different state, with the
Inputs indicated on the label

This is a state diagram for ?

3-Bit Counter

» Consider a circuit that stores a number and increments the value on
every clock edge — on reaching the largest value, it starts again from O

Draw the state diagram:
How many states?
How many inputs?

3-Bit Counter

» Consider a circuit that stores a number and increments the value on
every clock edge — on reaching the largest value, it starts again from O

Draw the state diagram:
= How many states?
= How many inputs?

oo 001 010 011 100 101 110 111

10

Traffic Light Controller

* Problem description: A traffic light with only green and red; either the
North-South road has green or the East-West road has green (both
can’t be red); there are detectors on the roads to indicate if a car is
on the road; the lights are updated every 30 seconds; a light need
change only if a car is waiting on the other road

State Transition Table:
How many states?
How many inputs?
How many outputs?

11

State Transition Table

* Problem description: A traffic light with only green and red; either the
North-South road has green or the East-West road has green (both
can’t be red); there are detectors on the roads to indicate if a car is
on the road; the lights are updated every 30 seconds; a light must
change only if a car is waiting on the other road

State Transition Table:
CurrState INputEW InputNS NextState=Output

mimmimZZ2Z2 Z2
ZMZMmMmmmZ Z2

P FRPOORFPF OO
P ORFRPRORFRLORFO

12

State Diagram

State Transition Table:
CurrState InputeW

mmmmZZZZ2
P FRPOORKREFE OO

NSgreen

INPUtNS

P ORFRPRORFRLRORFRO

EWecar

EWcar

NextState=Output

ZMZmmmZZZ

EWgreen

NScar

Source: H&P textbook

13

Basic MIPS Architecture

* Now that we understand clocks and storage of states,
we’ll design a simple CPU that executes:

= pbasic math (add, sub, and, or, slt)
= memory access (lw and sw)
= pranch and jump instructions (beq and)

14

Implementation Overview

* We need memory
= to store instructions
= to store data
= for now, let’'s make them separate units

* We need registers, ALU, and a whole lot of control logic
* CPU operations common to all instructions:
= use the program counter (PC) to pull instruction out

of instruction memory
= read register values

15

View from 30,000 Feet

Add

Add

Note: we haven't bothered
showing multiplexors

Address

Instruction

Instruction

memory

—

g

L & o

Data
Register #
Registers

Register #

Register #

Address

>ALU

Data

memory

 What is the role of the Add units?

» Explain the inputs to the data memory unit

» Explain the inputs to the ALU
« Explain the inputs to the register unit

Data

Y

Source: H&P textbook

16

Clocking Methodology

Add

* Which of the above units need a clock?

Address

Instruction

Instruction

memory

g

~|Add
|-> Data
Register #
Registers >ALU Address
Register # Data |
o+ Register # MEmory
= Data

Source: H&P textbook

* What is being saved (latched) on the rising edge of the clock?
Keep in mind that the latched value remains there for an entire cycll7e

Title

* Bullet

18

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

