Lecture 12: Adders, Sequential Circuits

e Today’s topics:

= Carry-lookahead adder
* Clocks, latches, sequential circuits



Speed of Ripple Carry

» The carry propagates thru every 1-bit box: each 1-bit box sequentially
implements AND and OR - total delay is the time to go through 64 gates!

* We've already seen that any logic equation can be expressed as the
sum of products — so it should be possible to compute the result by
going through only 2 gates!

» Caveat: need many parallel gates and each gate may have a very
large number of inputs — it is difficult to efficiently build such large
gates, so we’ll find a compromise:

= moderate number of gates
= moderate number of inputs to each gate
= moderate number of sequential gates traversed



Computing CarryOut

Carryinl = b0.CarrylnO + a0.CarrylnO + a0.b0
Carryln2 = b1.Carrylnl + al.Carrylnl + al.bl
= pb1.b0.cO + b1l.a0.cO + b1.a0.b0 +
al.b0.cO + al.a0.cO + al.a0.b0 + al.bl

Carryln32 = a really large sum of really large products
» Potentially fast implementation as the result is computed

by going thru just 2 levels of logic — unfortunately, each
gate is enormous and slow



Generate and Propagate

Equation re-phrased:
Ci+1 = ai.bi + ai.Ci + bi.Ci
= (al.bi) + (ai + bi).Ci

Stated verbally, the current pair of bits will generate a carry
If they are both 1 and the current pair of bits will propagate
a carry if eitheris 1

Generate signal = ai.bi
Propagate signal = ai + bi

Therefore, Ci+1 = Gi + Pi. Ci



Generate and Propagate

cl =90 + p0.cO
c2=9gl+pl.cl
=gl +pl.g0+ pl.p0.cO
c3 =92+ p2.9l1 + p2.p1.9g0 + p2.p1.p0.cO
c4d =g3 + p3.92 + p3.p2.9g1 + p3.p2.p1.9g0 + p3.p2.p1.p0.cO

Either, \

a carry was just generated, or

a carry was generated in the Ig

a carry was generated two step
the next two stages, or

a carry was generated N steps back and was propagated by every
single one of the N next stages

ackand was propagated by both

5



Divide and Conquer

* The equations on the previous slide are still difficult to implement as
logic functions — for the 32" bit, we must AND every single propagate
bit to determine what becomes of cO (among other things)

* Hence, the bits are broken into groups (of 4) and each group
computes its group-generate and group-propagate

* For example, to add 32 numbers, you can partition the task as a tree

AN AN AN AN



P and G for 4-bit Blocks

« Compute PO and GO (super-propagate and super-generate) for the
first group of 4 bits (and similarly for other groups of 4 bits)
PO = p0.pl1.p2.p3
GO =93 +g2.p3 +gl.p2.p3 +g0.pl.p2.p3

 Carry out of the first group of 4 bits is
Cl1=GO0+ PO0.cO
C2=G1+P1.GO + P1.P0.cO
C3=G2+ (P2.G1) + (P2.P1.GO) + (P2.P1.P0.c0)
C4 =G3 + (P3.G2) + (P3.P2.G1) + (P3.P2.P1.G0) + (P3.P2.P1.P0.c0)

* By having a tree of sub-computations, each AND, OR gate has few
iInputs and logic signals have to travel through a modest set of
gates (equal to the height of the tree)



Example

Add A 0001 1010 0011 0011
B 1110 0101 1110 1011

g 0000 0000 0010 0011
p 1111 1111 1111 1011

P 1 0
G 0 0 1 0



Carry Look-Ahead Adder

 16-bit Ripple-carry
takes 32 steps

 This design takes
how many steps?

Carryin
i
ald —= Carryln
b0 — Result0—3
al —»
b1 —
a2 —= ALUO
b2 —= PO —— pi
a3 —» I
b3 GO o g ‘ .
i+ 1 Carry-lookahead unit
a4 —= Carryln
bd —| * Resultd—7
ab —
b5 —
a6 —={ ALU1
bE —| p{ b— pi+1
a7 —» i+ 1
1 gi+
B : c2 ;
17 ci+2
a8 —= Carryln
b8 —=| Resultg—11
a9 —
b9 —=
al0—= ALUZ2
b10 —= p2 —— pi+2
all — = gi+2
e G2 g
C3 :
l— ci+3
alz —» Carryln
b12 — Result12-15
ald—=
b13 —=
al4 —=| ALU3
b14 —» P3 —— Pi+3
alh— I = qi+3
b15 —s G3 g

C4

hl.:H—cl

CarryOut

Source: H&P textbook



Clocks

* A microprocessor is composed of many different circuits
that are operating simultaneously — if each circuit X takes in
Inputs at time Tly, takes time TE, to execute the logic,
and produces outputs at time TO,, imagine the
complications in co-ordinating the tasks of every circuit

* A major school of thought (used in most processors built
today): all circuits on the chip share a clock signal (a
square wave) that tells every circuit when to accept
Inputs, how much time they have to execute the logic, and
when they must produce outputs

R A U



Clock Terminology

Rising clock edge

Cycle time

|

Falling clock edge

4 GHz = clock speed = 1

1

cycle time

250 ps

11



Sequential Circults

 Until now, circuits were combinational — when inputs change, the
outputs change after a while (time = logic delay thru circuit)

Inputs

Outputs

* We want the clock to act like a start and stop signal — a “latch” is
a storage device that separates these circuits — it ensures that
the inputs to the circuit do not change during a clock cycle

Clock
!

Inputs—

Latch

Clock
!

Outputs

o

12



Sequential Circults

» Sequential circuit: consists

A

of combinational circuit and 1
a storage element Inputs =
Clock —
* At the start of the clock Inputs —

cycle, the rising edge
causes the “state” storage
to store some input values

 This state will not change for an entire cycle (until next rising edge)

* The combinational circuit has some time to accept the value
of “state” and “inputs” and produce “outputs”

« Some of the outputs (for example, the value of next “state”) may feed

back (but through the latch so they’re only seen in the next cycle) i



Designing a Latch

* An S-R latch: set-reset latch
When Set is high, a 1 is stored
When Reset is high, a 0 is stored
When both are low, the previous state is preserved (hence,
known as a storage or memory element)
When both are high, the output is unstable — this set of inputs
IS therefore not allowed

Verify the above behavior! Q

Q
14
Source: H&P textbook



D Latch

* Incorporates a clock

* The value of the input D signal (data) is stored only when the clock
IS high — the previous state is preserved when the clock is low

C -

- Q

T L

|
N

15
Source: H&P textbook



D Flip Flop

» Terminology:
Latch: outputs can change any time the clock is high (asserted)

Flip flop: outputs can change only on a clock edge

* Two D latches in series — ensures that a value is stored only on
the falling edge of the clock

latch latch

Ql

Source: H&P textbook 16



Finite State Machine

* A sequential circuit is described by a variation of a truth
table — a finite state diagram (hence, the circuit is also
called a finite state machine)

* Note that state is updated only on a clock edge

Next
State

L Current
! State

Outputs
Inputs >

17

Clock




State Diagrams

» Each state i1s shown with a circle, labeled with the state
value — the contents of the circle are the outputs

* An arc represents a transition to a different state, with the
Inputs indicated on the label

This is a state diagram for ?

18



Title

* Bullet

19



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

