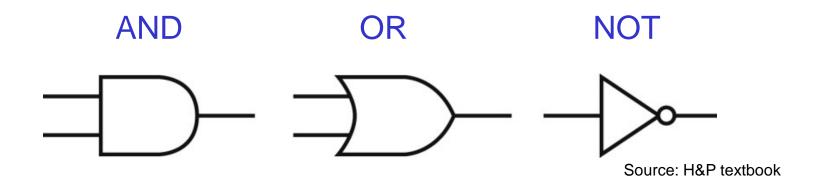
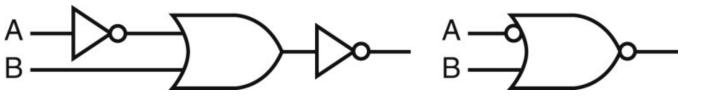
Lecture 11: Hardware for Arithmetic

- Today's topics:
 - Logic for common operations
 - Designing an ALU
 - Carry-lookahead adder

Pictorial Representations



What logic function is this?



Boolean Equation

 Consider the logic block that has an output E that is true only if exactly two of the three inputs A, B, C are true

Multiple correct equations:

Two must be true, but all three cannot be true:

$$E = ((A . B) + (B . C) + (A . C)) . (A . B . C)$$

Identify the three cases where it is true:

$$E = (A . B . \overline{C}) + (A . C . \overline{B}) + (C . B . \overline{A})$$

Sum of Products

- Can represent any logic block with the AND, OR, NOT operators
 - Draw the truth table
 - For each true output, represent the corresponding inputs as a product
 - The final equation is a sum of these products

_	Α	В	C	E	_
	0	0	0	0	
	0	0	1	0	$(A . B . \overline{C}) + (A . C . \overline{B}) + (C . B . \overline{A})$
	0	1	0	0	
	0	1	1	1	 Can also use "product of sums"
	1	0	0	0	 Any equation can be implemented
	1	0	1	1	with an array of ANDs, followed by
	1	1	0	1	
	1	1	1	0	an array of ORs

NAND and NOR

- NAND: NOT of AND: A nand B = A.B
- NOR: NOT of OR: A nor B = A + B
- NAND and NOR are universal gates, i.e., they can be used to construct any complex logical function

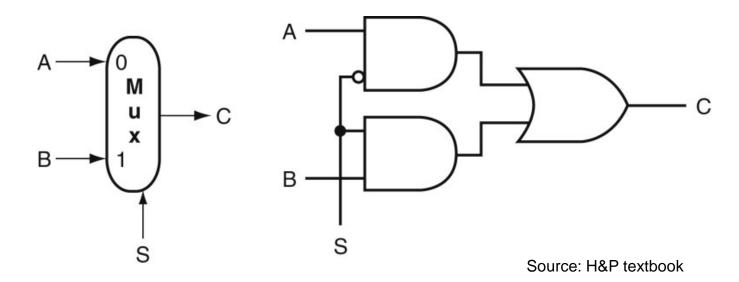
Common Logic Blocks – Decoder

Takes in N inputs and activates one of 2^N outputs

I ₀	I ₁	I_2		O_0	O ₁	02	O ₃	O ₄	O ₅	O ₆	O ₇
0	0	0		1	0	0	0	0	0	0	0
0	0	1		0	1	0	0	0	0	0	0
0	1	0		0	0	1	0	0	0	0	0
0	1	1		0	0	0	1	0	0	0	0
1	0	0		0	0	0	0	1	0	0	0
1	0	1		0	0	0	0	0	1	0	0
1	1	0		0	0	0	0	0	0	1	0
1	1	1		0	0	0	0	0	0	0	1
3-to-8 O ₀₋₇											

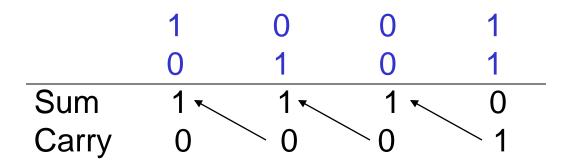
Common Logic Blocks – Multiplexor

 Multiplexor or selector: one of N inputs is reflected on the output depending on the value of the log₂N selector bits



2-input mux

Adder Algorithm



Truth Table for the above operations:

Α	В	Cin	Sum Cout
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Adder Algorithm

	1	0	0	1
	0	1	0	1
Sum	1 🔨	1	1 🔨	0
Carry	0	0	0	1

Truth Table for the above operations:

Α	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Equations:

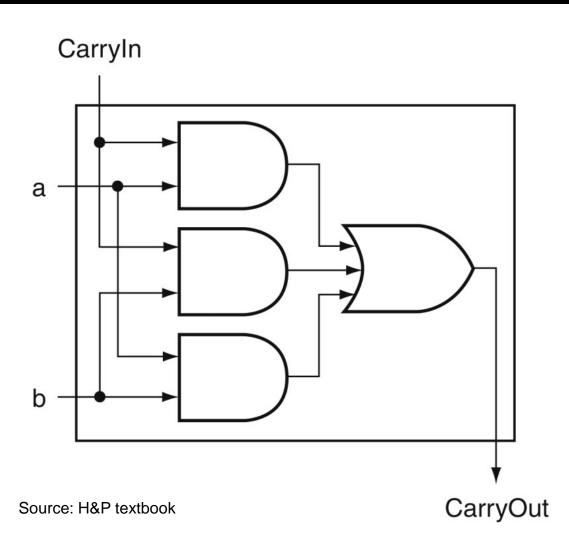
Sum = Cin
$$.\overline{A} .\overline{B} + B .\overline{Cin} .\overline{A} +$$

$$Cout = A \cdot B \cdot Cin +$$

$$=A.B +$$

9

Carry Out Logic



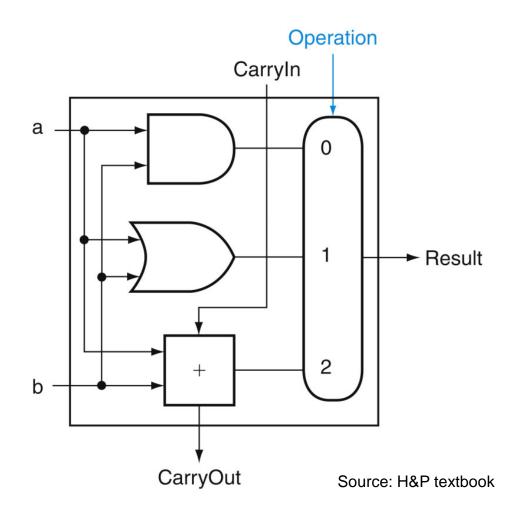
Equations:

Sum = Cin
$$.\overline{A} .\overline{B} +$$

B $.\overline{Cin} .\overline{A} +$
A $.\overline{Cin} .\overline{B} +$
A $.\overline{B} .\overline{Cin}$

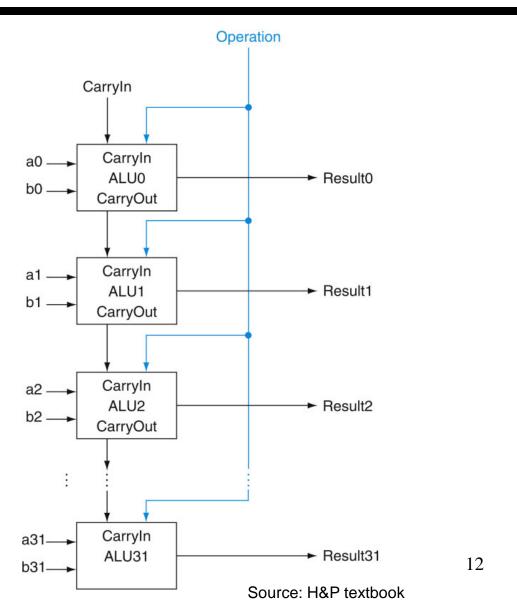
1-Bit ALU with Add, Or, And

Multiplexor selects between Add, Or, And operations



32-bit Ripple Carry Adder

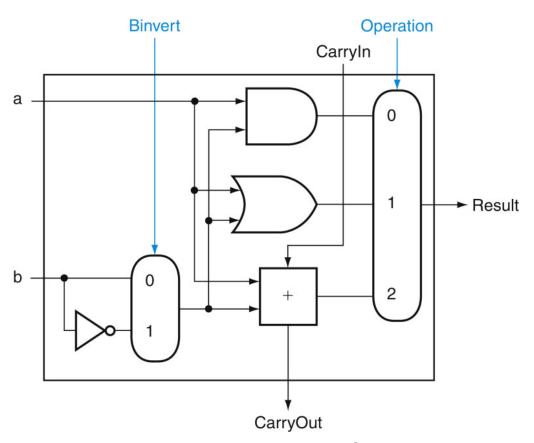
1-bit ALUs are connected "in series" with the carry-out of 1 box going into the carry-in of the next box



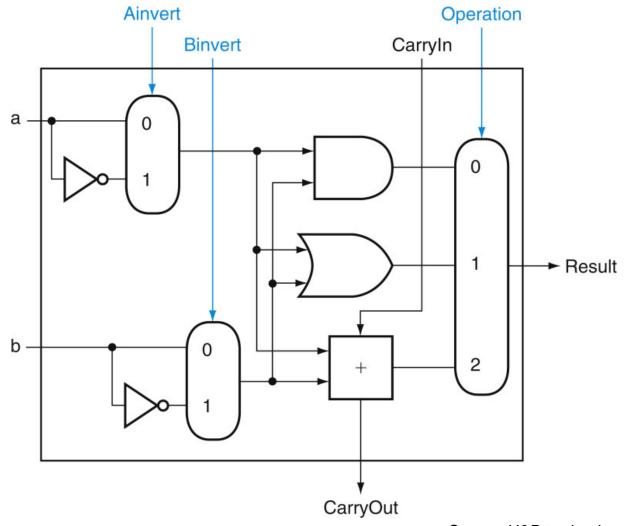
Incorporating Subtraction

Must invert bits of B and add a 1

- Include an inverter
- CarryIn for the first bit is 1
- The CarryIn signal (for the first bit) can be the same as the Binvert signal

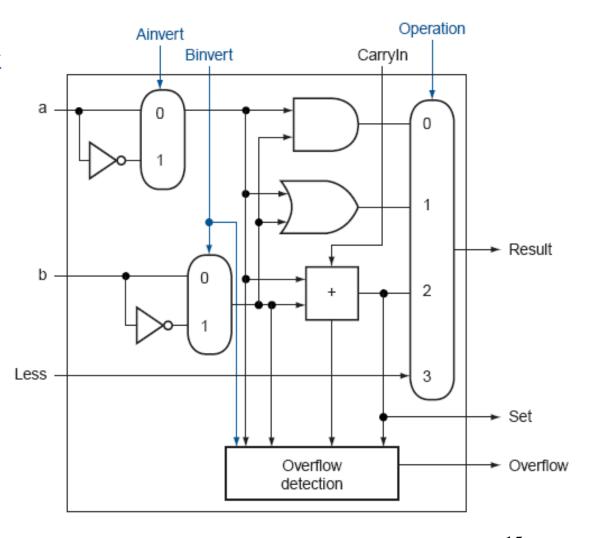


Incorporating NOR and NAND



Incorporating slt

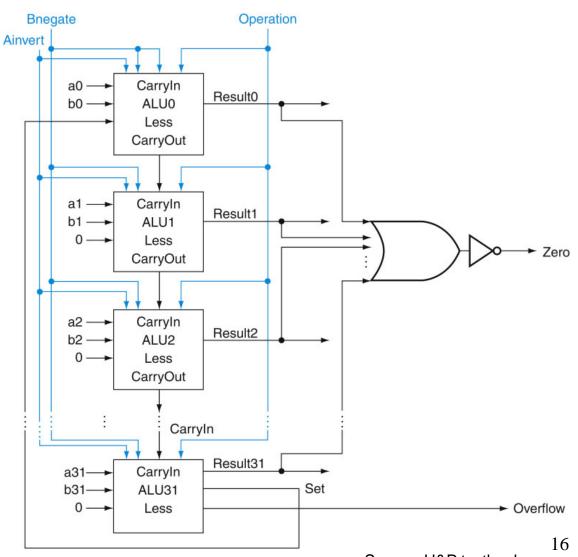
- Perform a b and check the sign
- New signal (Less) that is zero for ALU boxes 1-31
- The 31st box has a unit to detect overflow and sign – the sign bit serves as the Less signal for the 0th box



15

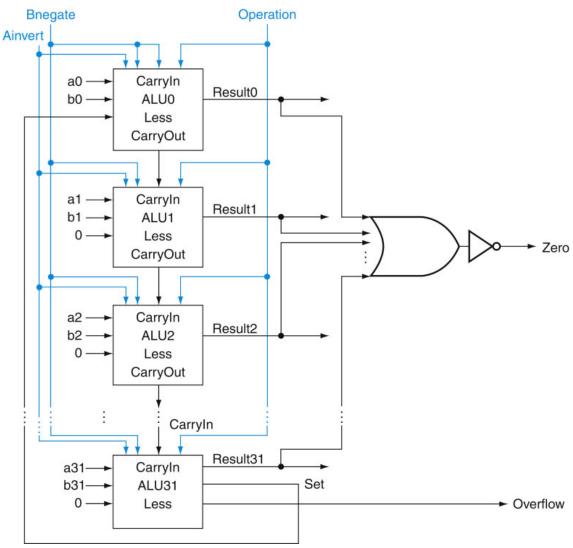
Incorporating beq

 Perform a – b and confirm that the result is all zero's



Control Lines

What are the values of the control lines and what operations do they correspond to?

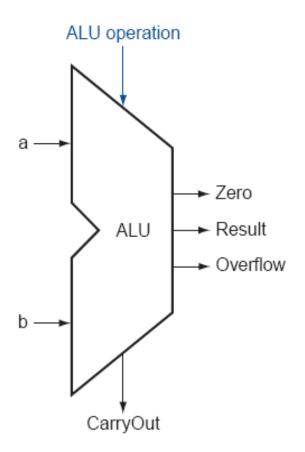


17

Control Lines

What are the values of the control lines and what operations do they correspond to?

	Ai	Bn	Op
AND	0	0	00
OR	0	0	01
Add	0	0	10
Sub	0	1	10
SLT	0	1	11
NOR	1	1	00



Speed of Ripple Carry

- The carry propagates thru every 1-bit box: each 1-bit box sequentially implements AND and OR – total delay is the time to go through 64 gates!
- We've already seen that any logic equation can be expressed as the sum of products – so it should be possible to compute the result by going through only 2 gates!
- Caveat: need many parallel gates and each gate may have a very large number of inputs – it is difficult to efficiently build such large gates, so we'll find a compromise:
 - moderate number of gates
 - moderate number of inputs to each gate
 - moderate number of sequential gates traversed

Computing CarryOut

```
CarryIn1 = b0.CarryIn0 + a0.CarryIn0 + a0.b0

CarryIn2 = b1.CarryIn1 + a1.CarryIn1 + a1.b1

= b1.b0.c0 + b1.a0.c0 + b1.a0.b0 +

a1.b0.c0 + a1.a0.c0 + a1.a0.b0 + a1.b1
```

. . .

Carryln32 = a really large sum of really large products

 Potentially fast implementation as the result is computed by going thru just 2 levels of logic – unfortunately, each gate is enormous and slow

Generate and Propagate

Equation re-phrased: Ci+1 = ai.bi + ai.Ci + bi.Ci

= (ai.bi) + (ai + bi).Ci

Stated verbally, the current pair of bits will *generate* a carry if they are both 1 and the current pair of bits will *propagate* a carry if either is 1

Generate signal = ai.bi Propagate signal = ai + bi

Therefore, Ci+1 = Gi + Pi. Ci

Generate and Propagate

```
c1 = g0 + p0.c0

c2 = g1 + p1.c1

= g1 + p1.g0 + p1.p0.c0

c3 = g2 + p2.g1 + p2.p1.g0 + p2.p1.p0.c0

c4 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0.c0
```

Either,

a carry was just generated, or

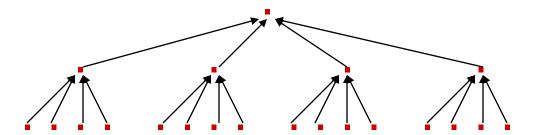
a carry was generated in the last step and was propagated, or

a carry was generated two steps back and was propagated by both the next two stages, or

a carry was generated N steps back and was propagated by every single one of the N next stages

Divide and Conquer

- The equations on the previous slide are still difficult to implement as logic functions – for the 32nd bit, we must AND every single propagate bit to determine what becomes of c0 (among other things)
- Hence, the bits are broken into groups (of 4) and each group computes its group-generate and group-propagate
- For example, to add 32 numbers, you can partition the task as a tree



P and G for 4-bit Blocks

 Compute P0 and G0 (super-propagate and super-generate) for the first group of 4 bits (and similarly for other groups of 4 bits)

$$P0 = p0.p1.p2.p3$$

 $G0 = g3 + g2.p3 + g1.p2.p3 + g0.p1.p2.p3$

Carry out of the first group of 4 bits is

$$C1 = G0 + P0.c0$$

 $C2 = G1 + P1.G0 + P1.P0.c0$

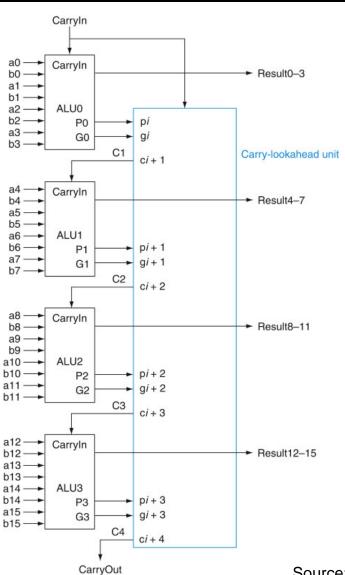
. . .

 By having a tree of sub-computations, each AND, OR gate has few inputs and logic signals have to travel through a modest set of gates (equal to the height of the tree)

Example

Carry Look-Ahead Adder

- 16-bit Ripple-carry takes 32 steps
- This design takes how many steps?



26

Title

Bullet