Lecture 8: Binary Multiplication & Division

- Today's topics:
 - Multiplication
 - Division

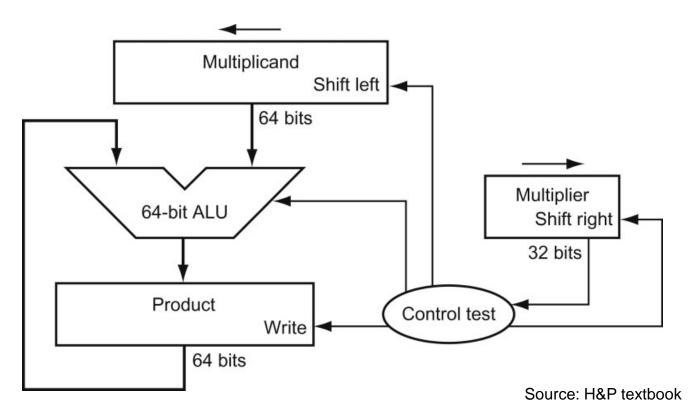
Multiplication Example

Multiplicand Multiplier	1000 _{ten} x 1001 _{ten}
	1000
	0000
	0000
	1000
Product	1001000 _{ten}

In every step

- multiplicand is shifted
- next bit of multiplier is examined (also a shifting step)
- if this bit is 1, shifted multiplicand is added to the product

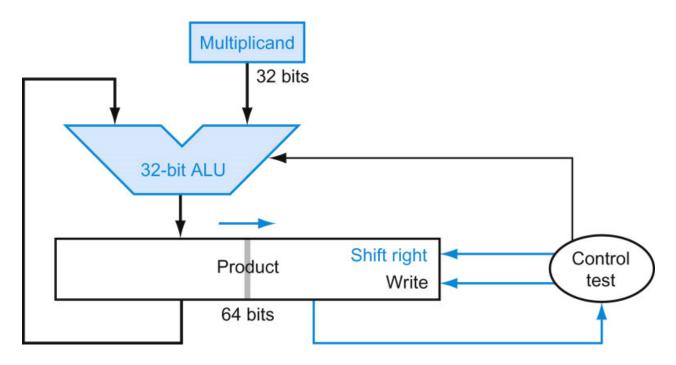
HW Algorithm 1



In every step

- multiplicand is shifted
- next bit of multiplier is examined (also a shifting step)
- if this bit is 1, shifted multiplicand is added to the product

HW Algorithm 2



Source: H&P textbook

- 32-bit ALU and multiplicand is untouched
- the sum keeps shifting right
- at every step, number of bits in product + multiplier = 64, hence, they share a single 64-bit register

Notes

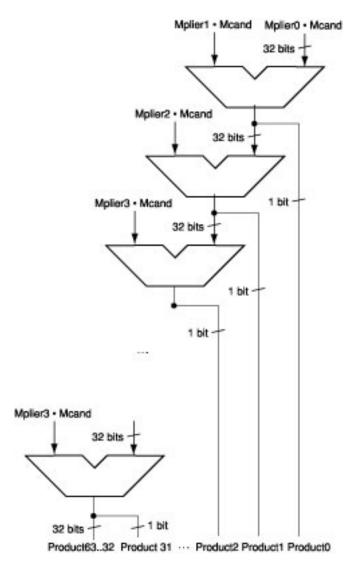
- The previous algorithm also works for signed numbers (negative numbers in 2's complement form)
- We can also convert negative numbers to positive, multiply the magnitudes, and convert to negative if signs disagree
- The product of two 32-bit numbers can be a 64-bit number
 - -- hence, in MIPS, the product is saved in two 32-bit registers

MIPS Instructions

mult \$s2, \$s3 computes the product and stores it in two "internal" registers that can be referred to as hi and lo mfhi \$s0 moves the value in hi into \$s0 mflo \$s1 moves the value in lo into \$s1

Similarly for multu

Fast Algorithm



- The previous algorithm requires a clock to ensure that the earlier addition has completed before shifting
- This algorithm can quickly set up most inputs – it then has to wait for the result of each add to propagate down – faster because no clock is involved
 - -- Note: high transistor cost

/

Source: H&P textbook

Division

At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

Division

At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

Divide Example

• Divide 7_{ten} (0000 0111_{two}) by 2_{ten} (0010_{two})

Iter	Step	Quot	Divisor	Remainder
0	Initial values			
1				
2				
3				
4				
5				

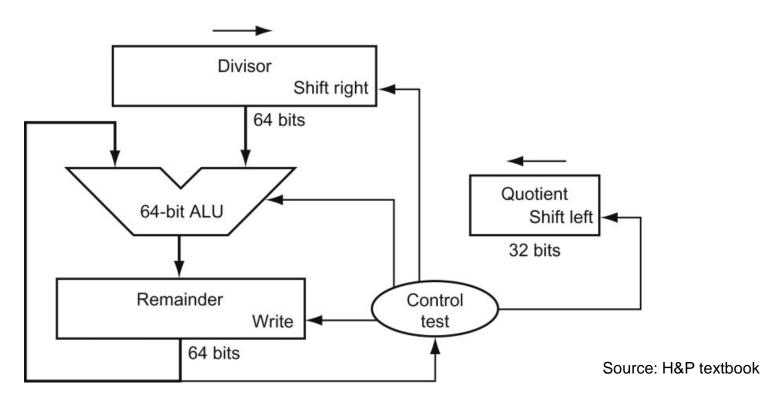
Divide Example

• Divide 7_{ten} (0000 0111_{two}) by 2_{ten} (0010_{two})

Iter	Step	Quot	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	Rem = Rem - Div	0000	0010 0000	1110 0111
	Rem < 0 → +Div, shift 0 into Q	0000	0010 0000	0000 0111
	Shift Div right	0000	0001 0000	0000 0111
2	Same steps as 1	0000	0001 0000	1111 0111
		0000	0001 0000	0000 0111
		0000	0000 1000	0000 0111
3	Same steps as 1	0000	0000 0100	0000 0111
4	Rem = Rem - Div	0000	0000 0100	0000 0011
	Rem >= 0 → shift 1 into Q	0001	0000 0100	0000 0011
	Shift Div right	0001	0000 0010	0000 0011
5	Same steps as 4	0011	0000 0001	0000 0001

П

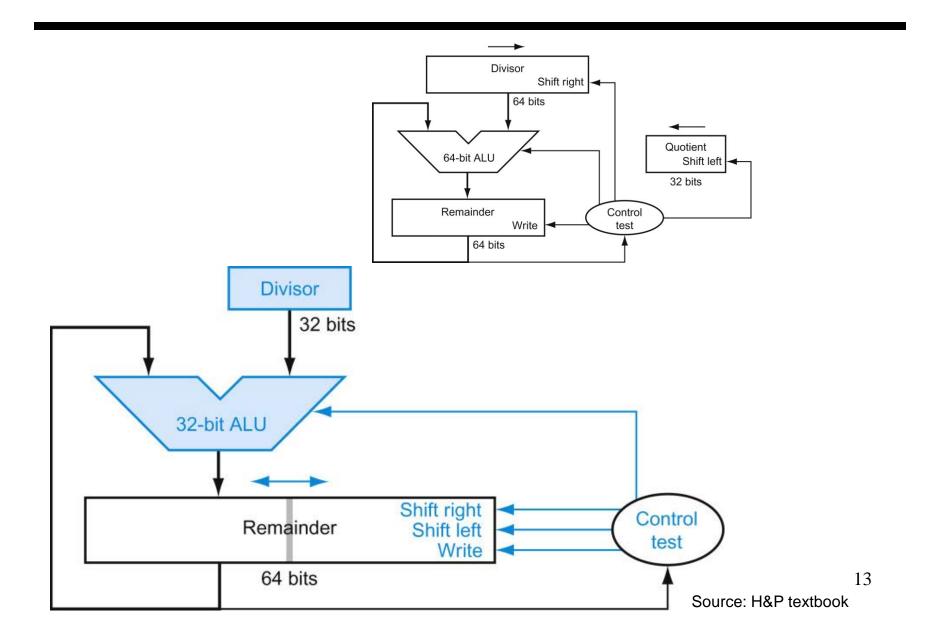
Hardware for Division



A comparison requires a subtract; the sign of the result is examined; if the result is negative, the divisor must be added back

Similar to multiply, results are placed in Hi (remainder) and Lo (quotient)

Efficient Division



Divisions Involving Negatives

- Simplest solution: convert to positive and adjust sign later
- Note that multiple solutions exist for the equation:
 Dividend = Quotient x Divisor + Remainder

```
+7 div +2 Quo = Rem =

-7 div +2 Quo = Rem =

+7 div -2 Quo = Rem =

-7 div -2 Quo = Rem =
```

Divisions involving Negatives

- Simplest solution: convert to positive and adjust sign later
- Note that multiple solutions exist for the equation:
 Dividend = Quotient x Divisor + Remainder

$$+7$$
 div $+2$ Quo = $+3$ Rem = $+1$
 -7 div $+2$ Quo = -3 Rem = -1
 $+7$ div -2 Quo = -3 Rem = $+1$
 -7 div -2 Quo = $+3$ Rem = -1

Convention: Dividend and remainder have the same sign
Quotient is negative if signs disagree
These rules fulfil the equation above

Title

Bullet