
1

Lecture 7: MARS, Computer Arithmetic

• Today’s topics:

 MARS intro
 Numerical representations
 Addition and subtraction

2

MARS Intro

• Directives, labels, global pointers, system calls

3

Example Print Routine

.data
str: .asciiz “the answer is ”

.text
li $v0, 4 # load immediate; 4 is the code for print_string
la $a0, str # the print_string syscall expects the string

address as the argument; la is the instruction
to load the address of the operand (str)

syscall # SPIM will now invoke syscall-4
li $v0, 1 # syscall-1 corresponds to print_int
li $a0, 5 # print_int expects the integer as its argument
syscall # SPIM will now invoke syscall-1

4

Example

• Write an assembly program to prompt the user for two numbers and
print the sum of the two numbers

5

Example
.text .data

.globl main str1: .asciiz “Enter 2 numbers:”
main: str2: .asciiz “The sum is ”

li $v0, 4
la $a0, str1
syscall
li $v0, 5
syscall
add $t0, $v0, $zero
li $v0, 5
syscall
add $t1, $v0, $zero
li $v0, 4
la $a0, str2
syscall
li $v0, 1
add $a0, $t1, $t0
syscall

6

Binary Representation

• The binary number

01011000 00010101 00101110 11100111

represents the quantity
0 x 231 + 1 x 230 + 0 x 229 + … + 1 x 20

• A 32-bit word can represent 232 numbers between
0 and 232-1

… this is known as the unsigned representation as
we’re assuming that numbers are always positive

Most significant bit Least significant bit

7

ASCII Vs. Binary

• Does it make more sense to represent a decimal number
in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it
take to represent the decimal number 1,000,000,000 in
ASCII and in binary?

8

ASCII Vs. Binary

• Does it make more sense to represent a decimal number
in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it
take to represent the decimal number 1,000,000,000 in
ASCII and in binary?

In binary: 30 bits (230 > 1 billion)
In ASCII: 10 characters, 8 bits per char = 80 bits

9

Negative Numbers

32 bits can only represent 232 numbers – if we wish to also represent
negative numbers, we can represent 231 positive numbers (incl zero)
and 231 negative numbers

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

10

2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Why is this representation favorable?
Consider the sum of 1 and -2 …. we get -1
Consider the sum of 2 and -1 …. we get +1

This format can directly undergo addition without any conversions!

Each number represents the quantity
x31 -231 + x30 230 + x29 229 + … + x1 21 + x0 20

11

2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Note that the sum of a number x and its inverted representation x’ always
equals a string of 1s (-1).

x + x’ = -1
x’ + 1 = -x … hence, can compute the negative of a number by
-x = x’ + 1 inverting all bits and adding 1

Similarly, the sum of x and –x gives us all zeroes, with a carry of 1
In reality, x + (-x) = 2n … hence the name 2’s complement

12

Example

• Compute the 32-bit 2’s complement representations
for the following decimal numbers:

5, -5, -6

13

Example

• Compute the 32-bit 2’s complement representations
for the following decimal numbers:

5, -5, -6

5: 0000 0000 0000 0000 0000 0000 0000 0101
-5: 1111 1111 1111 1111 1111 1111 1111 1011
-6: 1111 1111 1111 1111 1111 1111 1111 1010

Given -5, verify that negating and adding 1 yields the
number 5

14

Signed / Unsigned

• The hardware recognizes two formats:

unsigned (corresponding to the C declaration unsigned int)
-- all numbers are positive, a 1 in the most significant bit

just means it is a really large number

signed (C declaration is signed int or just int)
-- numbers can be +/- , a 1 in the MSB means the number

is negative

This distinction enables us to represent twice as many
numbers when we’re sure that we don’t need negatives

15

MIPS Instructions

Consider a comparison instruction:
slt $t0, $t1, $zero

and $t1 contains the 32-bit number 1111 01…01

What gets stored in $t0?

16

MIPS Instructions

Consider a comparison instruction:
slt $t0, $t1, $zero

and $t1 contains the 32-bit number 1111 01…01

What gets stored in $t0?
The result depends on whether $t1 is a signed or unsigned
number – the compiler/programmer must track this and
accordingly use either slt or sltu

slt $t0, $t1, $zero stores 1 in $t0
sltu $t0, $t1, $zero stores 0 in $t0

17

Sign Extension

• Occasionally, 16-bit signed numbers must be converted
into 32-bit signed numbers – for example, when doing an
add with an immediate operand

• The conversion is simple: take the most significant bit and
use it to fill up the additional bits on the left – known as
sign extension

So 210 goes from 0000 0000 0000 0010 to
0000 0000 0000 0000 0000 0000 0000 0010

and -210 goes from 1111 1111 1111 1110 to
1111 1111 1111 1111 1111 1111 1111 1110

18

Alternative Representations

• The following two (intuitive) representations were discarded
because they required additional conversion steps before
arithmetic could be performed on the numbers

 sign-and-magnitude: the most significant bit represents
+/- and the remaining bits express the magnitude

 one’s complement: -x is represented by inverting all
the bits of x

Both representations above suffer from two zeroes

19

Addition and Subtraction

• Addition is similar to decimal arithmetic

• For subtraction, simply add the negative number – hence,
subtract A-B involves negating B’s bits, adding 1 and A

Source: H&P textbook

20

Overflows

• For an unsigned number, overflow happens when the last carry (1)
cannot be accommodated

• For a signed number, overflow happens when the most significant bit
is not the same as every bit to its left
 when the sum of two positive numbers is a negative result
 when the sum of two negative numbers is a positive result
 The sum of a positive and negative number will never overflow

• MIPS allows addu and subu instructions that work with unsigned
integers and never flag an overflow – to detect the overflow, other
instructions will have to be executed

21

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

