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Lecture 7: MARS, Computer Arithmetic

• Today’s topics: 

 MARS intro
 Numerical representations
 Addition and subtraction
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MARS Intro

• Directives, labels, global pointers, system calls
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Example Print Routine

.data
str:     .asciiz   “the answer is ”

.text
li      $v0, 4               # load immediate; 4 is the code for print_string
la     $a0, str            #  the print_string syscall expects the string

#  address as the argument; la is the instruction
#  to load the address of the operand (str)

syscall                     #  SPIM will now invoke syscall-4
li      $v0, 1              #  syscall-1 corresponds to print_int
li      $a0, 5              #  print_int expects the integer as its argument
syscall                     #  SPIM will now invoke syscall-1
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Example

• Write an assembly program to prompt the user for two numbers and
print the sum of the two numbers
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Example
.text                                                   .data

.globl main                                        str1:  .asciiz  “Enter 2 numbers:”
main:                                                 str2:  .asciiz  “The sum is ”

li   $v0, 4
la  $a0, str1
syscall
li   $v0, 5
syscall
add  $t0, $v0, $zero
li   $v0, 5
syscall                                
add  $t1, $v0, $zero           
li   $v0, 4       
la  $a0, str2         
syscall
li    $v0, 1
add  $a0, $t1, $t0
syscall
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Binary Representation

• The binary number  

01011000 00010101 00101110 11100111

represents the quantity
0 x 231 + 1 x 230 + 0 x 229 + …  + 1 x 20

• A 32-bit word can represent  232 numbers between
0  and  232-1

… this is known as the unsigned representation as
we’re assuming that numbers are always positive

Most significant bit Least significant bit
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ASCII  Vs.  Binary

• Does it make more sense to represent a decimal number
in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it
take to represent the decimal number 1,000,000,000 in
ASCII and in binary?
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ASCII  Vs.  Binary

• Does it make more sense to represent a decimal number
in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it
take to represent the decimal number 1,000,000,000 in
ASCII and in binary?

In binary: 30 bits     (230 > 1 billion)
In ASCII: 10 characters, 8 bits per char  = 80 bits
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Negative Numbers

32 bits can only represent 232 numbers – if we wish to also represent
negative numbers, we can represent 231 positive numbers (incl zero)
and 231 negative numbers

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1
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2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)   
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Why is this representation favorable?
Consider the sum of  1 and -2  …. we get  -1
Consider the sum of  2 and -1  …. we get +1

This format can directly undergo addition without any conversions!

Each number represents the quantity
x31 -231 +  x30 230 + x29 229 + … + x1 21 + x0 20
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2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)   
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Note that the sum of a number x and its inverted representation x’ always
equals  a string of 1s (-1).

x + x’ = -1
x’ + 1 = -x        … hence, can compute the negative of a number by
-x = x’ + 1             inverting all bits and adding 1

Similarly, the sum of  x and –x gives us all zeroes, with a carry of 1
In reality, x + (-x) = 2n … hence the name 2’s complement
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Example

• Compute the 32-bit 2’s complement representations
for the following decimal numbers:

5,  -5, -6 
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Example

• Compute the 32-bit 2’s complement representations
for the following decimal numbers:

5,  -5, -6 

5:   0000 0000 0000 0000 0000 0000 0000 0101
-5:   1111  1111  1111  1111 1111  1111 1111 1011
-6:   1111 1111  1111  1111  1111  1111 1111 1010

Given -5, verify that negating and adding 1 yields the
number 5
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Signed / Unsigned

• The hardware recognizes two formats:

unsigned (corresponding to the C declaration  unsigned int)
-- all numbers are positive, a 1 in the most significant bit

just means it is a really large number

signed (C declaration is  signed int or just  int)
-- numbers can be +/- , a 1 in the MSB means the number

is negative

This distinction enables us to represent twice as many
numbers when we’re sure that we don’t need negatives
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MIPS Instructions

Consider a comparison instruction:
slt   $t0, $t1, $zero

and $t1 contains the 32-bit number   1111 01…01

What gets stored in $t0?
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MIPS Instructions

Consider a comparison instruction:
slt   $t0, $t1, $zero

and $t1 contains the 32-bit number   1111 01…01

What gets stored in $t0?
The result depends on whether $t1 is a signed or unsigned
number – the compiler/programmer must track this and
accordingly use either slt or  sltu

slt    $t0, $t1, $zero     stores  1 in $t0
sltu  $t0, $t1, $zero     stores  0 in $t0
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Sign Extension

• Occasionally, 16-bit signed numbers must be converted
into 32-bit signed numbers – for example, when doing an
add with an immediate operand

• The conversion is simple: take the most significant bit and
use it to fill up the additional bits on the left – known as
sign extension

So 210 goes from  0000 0000 0000 0010   to
0000 0000 0000 0000 0000 0000 0000 0010

and -210 goes from 1111 1111 1111 1110   to
1111 1111 1111 1111 1111 1111 1111 1110
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Alternative Representations

• The following two (intuitive) representations were discarded
because they required additional conversion steps before
arithmetic could be performed on the numbers

 sign-and-magnitude: the most significant bit represents
+/- and the remaining bits express the magnitude

 one’s complement: -x is represented by inverting all
the bits of x

Both representations above suffer from two zeroes
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Addition and Subtraction

• Addition is similar to decimal arithmetic

• For subtraction, simply add the negative number – hence,
subtract A-B involves negating B’s bits, adding 1 and A

Source: H&P textbook
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Overflows

• For an unsigned number, overflow happens when the last carry (1)
cannot be accommodated

• For a signed number, overflow happens when the most significant bit
is not the same as every bit to its left
 when the sum of two positive numbers is a negative result
 when the sum of two negative numbers is a positive result
 The sum of a positive and negative number will never overflow

• MIPS allows addu and subu instructions that work with unsigned
integers and never flag an overflow – to detect the overflow, other
instructions will have to be executed
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Title

• Bullet
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