Lecture 7: MARS, Computer Arithmetic

- Today's topics:
 - MARS intro
 - Numerical representations
 - Addition and subtraction

• Directives, labels, global pointers, system calls

.data

str: .asciiz "the answer is "

.text

li	\$v0, 4
la	\$a0, str

- # load immediate; 4 is the code for print_string# the print_string syscall expects the string# address as the argument; la is the instruction
- # to load the address of the operand (str)

syscall li \$v0, 1

- li \$a0, 5
- syscall

- # SPIM will now invoke syscall-4
- # syscall-1 corresponds to print_int
- # print_int expects the integer as its argument
 - # SPIM will now invoke syscall-1

• Write an assembly program to prompt the user for two numbers and print the sum of the two numbers

Example

.text	.data
.globl main	str1: .asciiz "Enter 2 numbers:"
main:	str2: .asciiz "The sum is "
li \$v0, 4	
la \$a0, str1	
syscall	
li \$v0, 5	
syscall	
add \$t0, \$v0, \$zero	
li \$v0, 5	
syscall	
add \$t1, \$v0, \$zero	
li \$∨0, 4	
la \$a0, str2	
syscall	
li \$v0, 1	
add \$a0, \$t1, \$t0	_
	5

syscall

• The binary number

→ 01011000 00010101 00101110 11100111 Most significant bit Least significant bit

> represents the quantity $0 \times 2^{31} + 1 \times 2^{30} + 0 \times 2^{29} + \dots + 1 \times 2^{0}$

A 32-bit word can represent 2³² numbers between
 0 and 2³²-1

... this is known as the unsigned representation as we're assuming that numbers are always positive

ASCII Vs. Binary

- Does it make more sense to represent a decimal number in ASCII?
- Hardware to implement arithmetic would be difficult
- What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?

ASCII Vs. Binary

- Does it make more sense to represent a decimal number in ASCII?
- Hardware to implement arithmetic would be difficult
- What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?

In binary: 30 bits $(2^{30} > 1 \text{ billion})$ In ASCII: 10 characters, 8 bits per char = 80 bits 32 bits can only represent 2^{32} numbers – if we wish to also represent negative numbers, we can represent 2^{31} positive numbers (incl zero) and 2^{31} negative numbers

 $\begin{array}{l} 0000 \ 00000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0$

 $1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ _{two} = -2^{31}$ $1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ _{two} = -(2^{31} - 1)$ $1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0010\ _{two} = -(2^{31} - 2)$

2's Complement

 $\begin{array}{l} 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ _{two} = 0_{ten} \\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ _{two} = 1_{ten} \\ \dots \\ 0111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ _{two} = 2^{31} - 1 \\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ _{two} = -2^{31} \\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ _{two} = -(2^{31} - 1) \\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ _{two} = -(2^{31} - 1) \\ 1000\ 000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 00\ 00\ 000\ 00$

Why is this representation favorable? Consider the sum of 1 and -2 we get -1 Consider the sum of 2 and -1 we get +1

This format can directly undergo addition without any conversions!

Each number represents the quantity $x_{31} - 2^{31} + x_{30} 2^{30} + x_{29} 2^{29} + ... + x_1 2^1 + x_0 2^0$

2's Complement

```
\begin{array}{l} 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ _{two} = 0_{ten} \\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ _{two} = 1_{ten} \\ \dots \\ 0111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ _{two} = 2^{31} - 1 \\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ _{two} = -2^{31} \\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ _{two} = -(2^{31} - 1) \\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ _{two} = -(2^{31} - 1) \\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 000\ 000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\
```

Note that the sum of a number x and its inverted representation x' always equals a string of 1s (-1).

$$x + x' = -1$$
 $x' + 1 = -x$ $-x = x' + 1$... hence, can compute the negative of a number byinverting all bits and adding 1

Similarly, the sum of x and -x gives us all zeroes, with a carry of 1 In reality, $x + (-x) = 2^n$... hence the name 2's complement

 Compute the 32-bit 2's complement representations for the following decimal numbers: 5, -5, -6

- Compute the 32-bit 2's complement representations for the following decimal numbers: 5, -5, -6

Given -5, verify that negating and adding 1 yields the number 5

• The hardware recognizes two formats:

unsigned (corresponding to the C declaration unsigned int) -- all numbers are positive, a 1 in the most significant bit just means it is a really large number

signed (C declaration is signed int or just int)

-- numbers can be +/-, a 1 in the MSB means the number is negative

This distinction enables us to represent twice as many numbers when we're sure that we don't need negatives

Consider a comparison instruction: slt \$t0, \$t1, \$zero and \$t1 contains the 32-bit number 1111 01...01

What gets stored in \$t0?

Consider a comparison instruction: slt \$t0, \$t1, \$zero and \$t1 contains the 32-bit number 1111 01...01

What gets stored in \$t0? The result depends on whether \$t1 is a signed or unsigned number – the compiler/programmer must track this and accordingly use either slt or sltu

slt \$t0, \$t1, \$zero stores 1 in \$t0 sltu \$t0, \$t1, \$zero stores 0 in \$t0

- Occasionally, 16-bit signed numbers must be converted into 32-bit signed numbers – for example, when doing an add with an immediate operand
- The conversion is simple: take the most significant bit and use it to fill up the additional bits on the left – known as sign extension

and -2₁₀ goes from 1111 1111 1111 1110 to 1111 1111 1111 1111 1111 1110

- The following two (intuitive) representations were discarded because they required additional conversion steps before arithmetic could be performed on the numbers
 - sign-and-magnitude: the most significant bit represents
 +/- and the remaining bits express the magnitude
 - one's complement: -x is represented by inverting all the bits of x

Both representations above suffer from two zeroes

- Addition is similar to decimal arithmetic
- For subtraction, simply add the negative number hence, subtract A-B involves negating B's bits, adding 1 and A

Source: H&P textbook

- For an unsigned number, overflow happens when the last carry (1) cannot be accommodated
- For a signed number, overflow happens when the most significant bit is not the same as every bit to its left
 - when the sum of two positive numbers is a negative result
 - when the sum of two negative numbers is a positive result
 - The sum of a positive and negative number will never overflow
- MIPS allows addu and subu instructions that work with unsigned integers and never flag an overflow – to detect the overflow, other instructions will have to be executed

Bullet