
1

Lecture 5: Procedure Calls

• Today’s topics:

 Procedure calls
 Large constants
 The compilation process

2

Example

Convert to assembly:

while (save[i] == k)
i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit:

3

Procedures

• Each procedure (function, subroutine) maintains a scratchpad of
register values – when another procedure is called (the callee), the
new procedure takes over the scratchpad – values may have to be
saved so we can safely return to the caller

 parameters (arguments) are placed where the callee can see them
 control is transferred to the callee
 acquire storage resources for callee
 execute the procedure
 place result value where caller can access it
 return control to caller

4

Registers

• The 32 MIPS registers are partitioned as follows:

 Register 0 : $zero always stores the constant 0
 Regs 2-3 : $v0, $v1 return values of a procedure
 Regs 4-7 : $a0-$a3 input arguments to a procedure
 Regs 8-15 : $t0-$t7 temporaries
 Regs 16-23: $s0-$s7 variables
 Regs 24-25: $t8-$t9 more temporaries
 Reg 28 : $gp global pointer
 Reg 29 : $sp stack pointer
 Reg 30 : $fp frame pointer
 Reg 31 : $ra return address

5

Jump-and-Link

• A special register (storage not part of the register file) maintains the
address of the instruction currently being executed – this is the
program counter (PC)

• The procedure call is executed by invoking the jump-and-link (jal)
instruction – the current PC (actually, PC+4) is saved in the register
$ra and we jump to the procedure’s address (the PC is accordingly
set to this address)

jal NewProcedureAddress

• Since jal may over-write a relevant value in $ra, it must be saved
somewhere (in memory?) before invoking the jal instruction

• How do we return control back to the caller after completing the
callee procedure?

6

The Stack

The register scratchpad for a procedure seems volatile –
it seems to disappear every time we switch procedures –
a procedure’s values are therefore backed up in memory
on a stack

Proc A’s values

Proc B’s values

Proc C’s values
…

High address

Low address
Stack grows

this way

Proc A

call Proc B
…
call Proc C

…
return

return
return

7

Storage Management on a Call/Return

• A new procedure must create space for all its variables on the stack

• Before/after executing the jal, the caller/callee must save relevant
values in $s0-$s7, $a0-$a3, $ra, temps into the stack space

• Arguments are copied into $a0-$a3; the jal is executed

• After the callee creates stack space, it updates the value of $sp

• Once the callee finishes, it copies the return value into $v0, frees
up stack space, and $sp is incremented

• On return, the caller/callee brings in stack values, ra, temps into registers

• The responsibility for copies between stack and registers may fall
upon either the caller or the callee

8

int leaf_example (int g, int h, int i, int j)
{

int f ;
f = (g + h) – (i + j);
return f;

}

leaf_example:
addi $sp, $sp, -12
sw $t1, 8($sp)
sw $t0, 4($sp)
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
lw $t0, 4($sp)
lw $t1, 8($sp)
addi $sp, $sp, 12
jr $ra

Notes:
In this example, the callee took care of
saving the registers it needs.

The caller took care of saving its $ra and
$a0-$a3.

Could have avoided using the stack altogether.

Example 1 (pg. 98)

9

int fact (int n)
{

if (n < 1) return (1);
else return (n * fact(n-1));

}

fact:
slti $t0, $a0, 1
beq $t0, $zero, L1
addi $v0, $zero, 1
jr $ra

L1:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
addi $a0, $a0, -1
jal fact
lw $a0, 0($sp)
lw $ra, 4($sp)
addi $sp, $sp, 8
mul $v0, $a0, $v0
jr $ra

Notes:
The caller saves $a0 and $ra
in its stack space.
Temp register $t0 is never saved.

Example 2 (pg. 101)

10

Dealing with Characters

• Instructions are also provided to deal with byte-sized
and half-word quantities: lb (load-byte), sb, lh, sh

• These data types are most useful when dealing with
characters, pixel values, etc.

• C employs ASCII formats to represent characters – each
character is represented with 8 bits and a string ends in
the null character (corresponding to the 8-bit number 0)

11

Example (pg. 108)

Convert to assembly:
void strcpy (char x[], char y[])
{

int i;
i=0;
while ((x[i] = y[i]) != `\0’)
i += 1;

}

strcpy:
addi $sp, $sp, -4
sw $s0, 0($sp)
add $s0, $zero, $zero
L1: add $t1, $s0, $a1
lb $t2, 0($t1)
add $t3, $s0, $a0
sb $t2, 0($t3)
beq $t2, $zero, L2
addi $s0, $s0, 1
j L1
L2: lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Notes:
Temp registers not saved.

12

Saving Conventions

• Caller saved: Temp registers $t0-$t9 (the callee won’t
bother saving these, so save them if you care), $ra (it’s
about to get over-written), $a0-$a3 (so you can put in
new arguments)

• Callee saved: $s0-$s7 (these typically contain “valuable”
data)

13

Large Constants

• Immediate instructions can only specify 16-bit constants

• The lui instruction is used to store a 16-bit constant into
the upper 16 bits of a register… combine this with an
OR instruction to specify a 32-bit constant

• The destination PC-address in a conditional branch is
specified as a 16-bit constant, relative to the current PC

• A jump (j) instruction can specify a 26-bit constant; if more
bits are required, the jump-register (jr) instruction is used

14

Starting a Program

C Program

Assembly language program

Object: machine language module Object: library routine (machine language)

Executable: machine language program

Memory

Compiler

Assembler

Linker

Loader

x.c

x.s

x.o x.a, x.so

a.out

15

Role of Assembler

• Convert pseudo-instructions into actual hardware
instructions – pseudo-instrs make it easier to program
in assembly – examples: “move”, “blt”, 32-bit immediate
operands, etc.

• Convert assembly instrs into machine instrs – a separate
object file (x.o) is created for each C file (x.c) – compute
the actual values for instruction labels – maintain info
on external references and debugging information

16

Role of Linker

• Stitches different object files into a single executable

 patch internal and external references
 determine addresses of data and instruction labels
 organize code and data modules in memory

• Some libraries (DLLs) are dynamically linked – the
executable points to dummy routines – these dummy
routines call the dynamic linker-loader so they can
update the executable to jump to the correct routine

17

Full Example – Sort in C (pg. 133)

• Allocate registers to program variables
• Produce code for the program body
• Preserve registers across procedure invocations

void sort (int v[], int n)
{

int i, j;
for (i=0; i<n; i+=1) {

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
swap (v,j);

}
}

}

void swap (int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

18

The swap Procedure

• Register allocation: $a0 and $a1 for the two arguments, $t0 for the
temp variable – no need for saves and restores as we’re not using
$s0-$s7 and this is a leaf procedure (won’t need to re-use $a0 and $a1)

swap: sll $t1, $a1, 2
add $t1, $a0, $t1
lw $t0, 0($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)
jr $ra

19

The sort Procedure

• Register allocation: arguments v and n use $a0 and $a1, i and j use
$s0 and $s1; must save $a0 and $a1 before calling the leaf
procedure

• The outer for loop looks like this: (note the use of pseudo-instrs)

move $s0, $zero # initialize the loop
loopbody1: bge $s0, $a1, exit1 # will eventually use slt and beq

… body of inner loop …
addi $s0, $s0, 1
j loopbody1

exit1:
for (i=0; i<n; i+=1) {

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
swap (v,j);

}
}

20

The sort Procedure

• The inner for loop looks like this:

addi $s1, $s0, -1 # initialize the loop
loopbody2: blt $s1, $zero, exit2 # will eventually use slt and beq

sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
bgt $t3, $t4, exit2
… body of inner loop …
addi $s1, $s1, -1
j loopbody2

exit2: for (i=0; i<n; i+=1) {
for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {

swap (v,j);
}

}

21

Saves and Restores

• Since we repeatedly call “swap” with $a0 and $a1, we begin “sort” by
copying its arguments into $s2 and $s3 – must update the rest of the
code in “sort” to use $s2 and $s3 instead of $a0 and $a1

• Must save $ra at the start of “sort” because it will get over-written when
we call “swap”

• Must also save $s0-$s3 so we don’t overwrite something that belongs
to the procedure that called “sort”

22

Saves and Restores

sort: addi $sp, $sp, -20
sw $ra, 16($sp)
sw $s3, 12($sp)
sw $s2, 8($sp)
sw $s1, 4($sp)
sw $s0, 0($sp)
move $s2, $a0
move $s3, $a1
…

move $a0, $s2 # the inner loop body starts here
move $a1, $s1
jal swap
…

exit1: lw $s0, 0($sp)
…

addi $sp, $sp, 20
jr $ra

9 lines of C code  35 lines of assembly

23

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

