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Lecture 5: Procedure Calls

• Today’s topics: 

 Procedure calls
 Large constants
 The compilation process
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Example

Convert to assembly:

while   (save[i] == k)
i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

Loop:  sll      $t1, $s3, 2
add    $t1, $t1, $s6
lw      $t0, 0($t1)
bne    $t0, $s5, Exit
addi   $s3, $s3, 1
j         Loop

Exit:
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Procedures

• Each procedure (function, subroutine) maintains a scratchpad of
register values – when another procedure is called (the callee), the
new procedure takes over the scratchpad – values may have to be
saved so we can safely return to the caller

 parameters (arguments) are placed where the callee can see them
 control is transferred to the callee
 acquire storage resources for callee
 execute the procedure
 place result value where caller can access it
 return control to caller
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Registers

• The 32 MIPS registers are partitioned as follows:

 Register 0 :  $zero        always stores the constant 0
 Regs 2-3   :  $v0, $v1   return values of a procedure
 Regs 4-7   :  $a0-$a3   input arguments to a procedure
 Regs 8-15 :  $t0-$t7     temporaries
 Regs 16-23: $s0-$s7    variables
 Regs 24-25: $t8-$t9     more temporaries
 Reg   28     : $gp          global pointer
 Reg   29     : $sp           stack pointer
 Reg   30     : $fp            frame pointer
 Reg   31     : $ra           return address 
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Jump-and-Link

• A special register (storage not part of the register file) maintains the
address of the instruction currently being executed – this is the
program counter (PC)

• The procedure call is executed by invoking the jump-and-link (jal)
instruction – the current PC (actually, PC+4) is saved in the register
$ra and we jump to the procedure’s address (the PC is accordingly
set to this address)

jal    NewProcedureAddress

• Since jal may over-write a relevant value in $ra, it must be saved
somewhere (in memory?) before invoking the jal instruction

• How do we return control back to the caller after completing the
callee procedure?
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The Stack

The register scratchpad for a procedure seems volatile –
it seems to disappear every time we switch procedures –
a procedure’s values are therefore backed up in memory
on a stack

Proc A’s  values

Proc B’s  values

Proc C’s  values
…

High address

Low address
Stack grows

this way

Proc  A

call  Proc B
…
call Proc C

…
return

return
return
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Storage Management on a Call/Return

• A new procedure must create space for all its variables on the stack

• Before/after executing the jal, the caller/callee must save relevant
values in $s0-$s7, $a0-$a3, $ra, temps into the stack space

• Arguments are copied into $a0-$a3; the jal is executed

• After the callee creates stack space, it updates the value of $sp

• Once the callee finishes, it copies the return value into $v0, frees
up stack space, and $sp is incremented

• On return, the caller/callee brings in stack values, ra, temps into registers

• The responsibility for copies between stack and registers may fall
upon either the caller or the callee
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int  leaf_example (int g, int h, int i, int j)
{ 

int f ;
f = (g + h) – (i + j);
return f;

}

leaf_example:
addi      $sp,  $sp,  -12
sw         $t1, 8($sp)
sw         $t0, 4($sp)
sw         $s0, 0($sp)
add       $t0, $a0, $a1
add       $t1, $a2, $a3
sub       $s0, $t0, $t1
add       $v0, $s0, $zero
lw         $s0, 0($sp)
lw         $t0, 4($sp)
lw         $t1, 8($sp)
addi      $sp, $sp, 12
jr           $ra

Notes:
In this example, the callee took care of
saving the registers it needs. 

The caller took care of saving its $ra and
$a0-$a3.

Could have avoided using the stack altogether.

Example 1 (pg. 98)
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int   fact  (int n)
{

if (n < 1)  return (1);
else return (n * fact(n-1));

}

fact:
slti $t0, $a0, 1
beq $t0, $zero, L1
addi $v0, $zero, 1
jr $ra

L1:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
addi $a0, $a0, -1
jal fact
lw $a0, 0($sp)
lw $ra, 4($sp)
addi $sp, $sp, 8
mul $v0, $a0, $v0
jr $ra

Notes:
The caller saves $a0 and $ra
in its stack space.
Temp register $t0 is never saved.

Example 2 (pg. 101)
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Dealing with Characters

• Instructions are also provided to deal with byte-sized
and half-word quantities: lb (load-byte), sb, lh, sh

• These data types are most useful when dealing with
characters, pixel values, etc.

• C employs ASCII formats to represent characters – each
character is represented with 8 bits and a string ends in
the null character (corresponding to the 8-bit number 0)
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Example (pg. 108)

Convert to assembly:
void strcpy (char x[], char y[])
{

int i;
i=0;
while  ((x[i] = y[i]) != `\0’)
i += 1;

}

strcpy:
addi     $sp, $sp, -4
sw       $s0, 0($sp)
add      $s0, $zero, $zero
L1: add  $t1, $s0, $a1
lb         $t2, 0($t1)
add      $t3, $s0, $a0
sb        $t2, 0($t3)
beq      $t2, $zero, L2
addi     $s0, $s0, 1
j           L1
L2: lw    $s0, 0($sp)
addi     $sp, $sp, 4
jr          $ra

Notes:
Temp registers not saved.
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Saving Conventions

• Caller saved: Temp registers $t0-$t9 (the callee won’t
bother saving these, so save them if you care), $ra (it’s
about to get over-written), $a0-$a3 (so you can put in
new arguments)

• Callee saved: $s0-$s7 (these typically contain “valuable”
data)
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Large Constants

• Immediate instructions can only specify 16-bit constants

• The lui instruction is used to store a 16-bit constant into
the upper 16 bits of a register… combine this with an
OR instruction to specify a 32-bit constant

• The destination PC-address in a conditional branch is
specified as a 16-bit constant, relative to the current PC

• A jump (j) instruction can specify a 26-bit constant; if more
bits are required, the jump-register (jr) instruction is used
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Starting a Program

C Program

Assembly language program

Object: machine language module Object: library routine (machine language)

Executable: machine language program

Memory

Compiler

Assembler

Linker

Loader

x.c

x.s

x.o x.a, x.so

a.out
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Role of Assembler

• Convert pseudo-instructions into actual hardware
instructions – pseudo-instrs make it easier to program
in assembly – examples: “move”, “blt”, 32-bit immediate
operands, etc. 

• Convert assembly instrs into machine instrs – a separate
object file (x.o) is created for each C file (x.c) – compute
the actual values for instruction labels – maintain info
on external references and debugging information
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Role of Linker

• Stitches different object files into a single executable

 patch internal and external references
 determine addresses of data and instruction labels
 organize code and data modules in memory

• Some libraries (DLLs) are dynamically linked – the
executable points to dummy routines – these dummy
routines call the dynamic linker-loader so they can
update the executable to jump to the correct routine
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Full Example – Sort in C (pg. 133)

• Allocate registers to program variables
• Produce code for the program body
• Preserve registers across procedure invocations

void sort (int v[], int n)
{

int i, j;
for (i=0; i<n; i+=1) {

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
swap (v,j);

}
}

}

void swap (int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}
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The swap Procedure

• Register allocation: $a0 and $a1 for the two arguments, $t0 for the
temp variable – no need for saves and restores as we’re not using
$s0-$s7 and this is a leaf procedure (won’t need to re-use $a0 and $a1)

swap:    sll     $t1, $a1, 2
add   $t1, $a0, $t1 
lw     $t0, 0($t1)    
lw     $t2, 4($t1)    
sw     $t2, 0($t1)   
sw     $t0, 4($t1)
jr      $ra
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The sort Procedure

• Register allocation: arguments v and n use $a0 and $a1, i and j use
$s0 and $s1; must save $a0 and $a1 before calling the leaf
procedure

• The outer for loop looks like this: (note the use of pseudo-instrs)

move   $s0, $zero            # initialize the loop
loopbody1: bge      $s0, $a1, exit1     # will eventually use slt and beq

… body of inner loop …
addi     $s0, $s0, 1
j            loopbody1

exit1: 
for (i=0; i<n; i+=1) {

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
swap (v,j);

}
}
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The sort Procedure

• The inner for loop looks like this:

addi     $s1, $s0, -1          # initialize the loop
loopbody2: blt        $s1, $zero, exit2   # will eventually use slt and beq

sll        $t1,  $s1, 2
add      $t2, $a0, $t1
lw        $t3, 0($t2)
lw        $t4, 4($t2)
bgt       $t3, $t4, exit2
… body of inner loop …
addi     $s1, $s1, -1
j            loopbody2

exit2: for (i=0; i<n; i+=1) {
for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {

swap (v,j);
}

}
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Saves and Restores

• Since we repeatedly call “swap” with $a0 and $a1, we begin “sort” by
copying its arguments into $s2 and $s3 – must update the rest of the
code in “sort” to use $s2 and $s3 instead of $a0 and $a1

• Must save $ra at the start of “sort” because it will get over-written when
we call “swap”

• Must also save $s0-$s3 so we don’t overwrite something that belongs
to the procedure that called “sort”
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Saves and Restores

sort:    addi     $sp, $sp, -20
sw       $ra, 16($sp)
sw       $s3, 12($sp)
sw       $s2, 8($sp)
sw       $s1, 4($sp)
sw       $s0, 0($sp)
move    $s2, $a0
move    $s3, $a1
…

move    $a0, $s2        # the inner loop body starts here
move    $a1, $s1
jal         swap
…

exit1:  lw         $s0, 0($sp)
…

addi       $sp, $sp, 20
jr            $ra

9 lines of C code  35 lines of assembly
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Title

• Bullet
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