
1

Lecture 4: MIPS Instruction Set

• Today’s topic:

 More MIPS instructions
 Procedure call/return

2

Immediate Operands

• An instruction may require a constant as input

• An immediate instruction uses a constant number as one
of the inputs (instead of a register operand)

• Putting a constant in a register requires addition to
register $zero (a special register that always has zero in it)
-- since every instruction requires at least one operand

to be a register

• For example, putting the constant 1000 into a register:

addi $s0, $zero, 1000

3

Memory Instruction Format

• The format of a load instruction:

destination register
source address

lw $t0, 8($t3)

any register
a constant that is added to the register in brackets

4

Memory Instruction Format

• The format of a store instruction:

source register
source address

sw $t0, 8($t3)

any register
a constant that is added to the register in brackets

5

Memory Organization

• The space allocated on stack by a procedure is termed the activation
record (includes saved values and data local to the procedure) – frame
pointer points to the start of the record and stack pointer points to the
end – variable addresses are specified relative to $fp as $sp may
change during the execution of the procedure

• $gp points to area in memory that saves global variables
• Dynamically allocated storage (with malloc()) is placed on the heap

Stack

Dynamic data (heap)
Static data (globals)

Text (instructions)

6

Base Address and Offsets

C code: a = b + c ;

addi $gp, $zero, 1000 # putting base address 1000 into
the global pointer

lw $s2, 4($gp) # loading variable b into $s2
lw $s3, 8($gp) # loading variable c into $s3
add $s1, $s2, $s3 # sum in $s1
sw $s1, $gp # storing sum into variable a
addi $s4, $gp, 12 # $s4 now contains the start

address of array d[]

7

Example

Convert to assembly:

C code: d[3] = d[2] + a;

Assembly:
lw $t0, 8($s4) # d[2] is brought into $t0
add $t0, $t0, $s1 # the sum is in $t0
sw $t0, 12($s4) # $t0 is stored into d[3]

Assembly version of the code continues to expand!

8

Recap – Numeric Representations

• Decimal 3510 = 3 x 101 + 5 x 100

• Binary 001000112 = 1 x 25 + 1 x 21 + 1 x 20

• Hexadecimal (compact representation)
0x 23 or 23hex = 2 x 161 + 3 x 160

0-15 (decimal) 0-9, a-f (hex)

Dec Binary Hex
0 0000 00
1 0001 01
2 0010 02
3 0011 03

Dec Binary Hex
4 0100 04
5 0101 05
6 0110 06
7 0111 07

Dec Binary Hex
8 1000 08
9 1001 09

10 1010 0a
11 1011 0b

Dec Binary Hex
12 1100 0c
13 1101 0d
14 1110 0e
15 1111 0f

9

Instruction Formats

Instructions are represented as 32-bit numbers (one word),
broken into 6 fields

R-type instruction add $t0, $s1, $s2
000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
op rs rt rd shamt funct

opcode source source dest shift amt function

I-type instruction lw $t0, 32($s3)
6 bits 5 bits 5 bits 16 bits

opcode rs rt constant

10

Logical Operations

Logical ops C operators Java operators MIPS instr

Shift Left << << sll
Shift Right >> >>> srl
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit NOT ~ ~ nor

11

Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2: beq register1, register2, L1
Similarly, bne and slt (set-on-less-than)

• Unconditional branch:
j L1
jr $s0 (useful for large case statements and big jumps)

Convert to assembly:
if (i == j)

f = g+h;
else

f = g-h;

12

Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2: beq register1, register2, L1
Similarly, bne and slt (set-on-less-than)

• Unconditional branch:
j L1
jr $s0 (useful for large case statements and big jumps)

Convert to assembly:
if (i == j) bne $s3, $s4, Else

f = g+h; add $s0, $s1, $s2
else j Exit

f = g-h; Else: sub $s0, $s1, $s2
Exit:

13

Example

Convert to assembly:

while (save[i] == k)
i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

14

Example

Convert to assembly:

while (save[i] == k)
i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit:

15

Procedures

• Each procedure (function, subroutine) maintains a scratchpad of
register values – when another procedure is called (the callee), the
new procedure takes over the scratchpad – values may have to be
saved so we can safely return to the caller

 parameters (arguments) are placed where the callee can see them
 control is transferred to the callee
 acquire storage resources for callee
 execute the procedure
 place result value where caller can access it
 return control to caller

16

Registers

• The 32 MIPS registers are partitioned as follows:

 Register 0 : $zero always stores the constant 0
 Regs 2-3 : $v0, $v1 return values of a procedure
 Regs 4-7 : $a0-$a3 input arguments to a procedure
 Regs 8-15 : $t0-$t7 temporaries
 Regs 16-23: $s0-$s7 variables
 Regs 24-25: $t8-$t9 more temporaries
 Reg 28 : $gp global pointer
 Reg 29 : $sp stack pointer
 Reg 30 : $fp frame pointer
 Reg 31 : $ra return address

17

Jump-and-Link

• A special register (storage not part of the register file) maintains the
address of the instruction currently being executed – this is the
program counter (PC)

• The procedure call is executed by invoking the jump-and-link (jal)
instruction – the current PC (actually, PC+4) is saved in the register
$ra and we jump to the procedure’s address (the PC is accordingly
set to this address)

jal NewProcedureAddress

• Since jal may over-write a relevant value in $ra, it must be saved
somewhere (in memory?) before invoking the jal instruction

• How do we return control back to the caller after completing the
callee procedure?

18

The Stack

The register scratchpad for a procedure seems volatile –
it seems to disappear every time we switch procedures –
a procedure’s values are therefore backed up in memory
on a stack

Proc A’s values

Proc B’s values

Proc C’s values
…

High address

Low address
Stack grows

this way

Proc A

call Proc B
…
call Proc C

…
return

return
return

19

Storage Management on a Call/Return

• A new procedure must create space for all its variables on the stack

• Before executing the jal, the caller must save relevant values in
$s0-$s7, $a0-$a3, $ra, temps into its own stack space

• Arguments are copied into $a0-$a3; the jal is executed

• After the callee creates stack space, it updates the value of $sp

• Once the callee finishes, it copies the return value into $v0, frees
up stack space, and $sp is incremented

• On return, the caller may bring in its stack values, ra, temps into registers

• The responsibility for copies between stack and registers may fall
upon either the caller or the callee

20

Example 1

int leaf_example (int g, int h, int i, int j)
{

int f ;
f = (g + h) – (i + j);
return f;

}

leaf_example:
addi $sp, $sp, -12
sw $t1, 8($sp)
sw $t0, 4($sp)
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
lw $t0, 4($sp)
lw $t1, 8($sp)
addi $sp, $sp, 12
jr $ra

21

Example 1

int leaf_example (int g, int h, int i, int j)
{

int f ;
f = (g + h) – (i + j);
return f;

}

leaf_example:
addi $sp, $sp, -12
sw $t1, 8($sp)
sw $t0, 4($sp)
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
lw $t0, 4($sp)
lw $t1, 8($sp)
addi $sp, $sp, 12
jr $ra

Notes:
In this example, the procedure’s
stack space was used for the caller’s
variables, not the callee’s – the compiler
decided that was better.

The caller took care of saving its $ra and
$a0-$a3.

22

Example 2

int fact (int n)
{

if (n < 1) return (1);
else return (n * fact(n-1));

}

fact:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
slti $t0, $a0, 1
beq $t0, $zero, L1
addi $v0, $zero, 1
addi $sp, $sp, 8
jr $ra

L1:
addi $a0, $a0, -1
jal fact
lw $a0, 0($sp)
lw $ra, 4($sp)
addi $sp, $sp, 8
mul $v0, $a0, $v0
jr $ra

23

Example 2

int fact (int n)
{

if (n < 1) return (1);
else return (n * fact(n-1));

}

fact:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
slti $t0, $a0, 1
beq $t0, $zero, L1
addi $v0, $zero, 1
addi $sp, $sp, 8
jr $ra

L1:
addi $a0, $a0, -1
jal fact
lw $a0, 0($sp)
lw $ra, 4($sp)
addi $sp, $sp, 8
mul $v0, $a0, $v0
jr $ra

Notes:
The caller saves $a0 and $ra
in its stack space.
Temps are never saved.

24

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

