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Lecture 2: Performance, MIPS ISA

• Today’s topics: 

 Performance equations
 MIPS instructions

• Reminder: canvas and class webpage: 
http://www.cs.utah.edu/~rajeev/cs3810/

• Reminder: sign up for the mailing list csece3810

• See info on TA office hours on class webpage

• From your classmate, Jeremy: www.UteSwap.com
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Performance Metrics

• Possible measures:
 response time – time elapsed between start and end

of a program
 throughput – amount of work done in a fixed time

• The two measures are usually linked
 A faster processor will improve both
 More processors will likely only improve throughput
 Some policies will improve throughput and worsen 

response time

• What influences performance?



3

Execution Time

Consider a system X executing a fixed workload W

PerformanceX = 1 / Execution timeX

Execution time = response time = wall clock time
- Note that this includes time to execute the workload
as well as time spent by the operating system
co-ordinating various events

The UNIX “time” command breaks up the wall clock time
as user and system time
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Speedup and Improvement

• System X executes a program in 10 seconds, system Y
executes the same program in 15 seconds

• System X is 1.5 times faster than system Y

• The speedup of system X over system Y is 1.5  (the ratio)

• The performance improvement of X over Y is 
1.5 -1 = 0.5 = 50%

• The execution time reduction for the program, compared to
Y is (15-10) / 15  = 33%
The execution time increase, compared to X is 
(15-10) / 10 = 50%
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A Primer on Clocks and Cycles
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Performance Equation - I

CPU execution time = CPU clock cycles  x  Clock cycle time
Clock cycle time = 1 / Clock speed

If a processor has a frequency of 3 GHz, the clock ticks
3 billion times in a second – as we’ll soon see, with each
clock tick, one or more/less instructions may complete

If a program runs for 10 seconds on a 3 GHz processor,
how many clock cycles did it run for?

If a program runs for 2 billion clock cycles on a 1.5 GHz
processor, what is the execution time in seconds?
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Performance Equation - II

CPU clock cycles = number of instrs  x  avg clock cycles
per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time x number of instrs x avg CPI

If a 2 GHz processor graduates an instruction every third cycle,
how many instructions are there in a program that runs for
10 seconds?
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Factors Influencing Performance

Execution time = clock cycle time x number of instrs x avg CPI

• Clock cycle time: manufacturing process (how fast is each
transistor), how much work gets done in each pipeline stage
(more on this later)

• Number of instrs: the quality of the compiler and the
instruction set architecture

• CPI: the nature of each instruction and the quality of the
architecture implementation
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Example

Execution time = clock cycle time x number of instrs x avg CPI

Which of the following two systems is better?

• A program is converted into 4 billion MIPS instructions by a
compiler ; the MIPS processor is implemented such that
each instruction completes in an average of 1.5 cycles and
the clock speed is 1 GHz

• The same program is converted into 2 billion x86 instructions;
the x86 processor is implemented such that each instruction
completes in an average of 6 cycles and the clock speed is
1.5 GHz
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Benchmark Suites

• Each vendor announces a SPEC rating for their system
 a measure of execution time for a fixed collection of

programs
 is a function of a specific CPU, memory system, IO

system, operating system, compiler
 enables easy comparison of different systems

The key is coming up with a collection of relevant programs 
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SPEC CPU

• SPEC: System Performance Evaluation Corporation, an industry
consortium that creates a collection of relevant programs

• The 2006 version includes 12 integer and 17 floating-point applications

• The SPEC rating specifies how much faster a system is, compared to
a baseline machine – a system with SPEC rating 600 is 1.5 times 
faster than a system with SPEC rating 400

• Note that this rating incorporates the behavior of all 29 programs – this
may not necessarily predict performance for your favorite program!
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Deriving a Single Performance Number

How is the performance of 29 different apps compressed
into a single performance number?

• SPEC uses geometric mean (GM) – the execution time
of each program is multiplied and the Nth root is derived

• Another popular metric is arithmetic mean (AM) – the
average of each program’s execution time

• Weighted arithmetic mean – the execution times of some
programs are weighted to balance priorities
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Amdahl’s Law

• Architecture design is very bottleneck-driven – make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

• Example: a web server spends 40% of time in the CPU
and 60% of time doing I/O – a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) – Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66)
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Common Principles

• Amdahl’s Law

• Energy: systems leak energy even when idle

• Energy: performance improvements typically also result
in energy improvements

• 90-10 rule: 10% of the program accounts for 90% of
execution time

• Principle of locality: the same data/code will be used
again (temporal locality), nearby data/code will be
touched next (spatial locality)
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Recap

• Knowledge of hardware improves software quality:
compilers, OS, threaded programs, memory management

• Important trends: growing transistors, move to multi-core,
slowing rate of performance improvement, power/thermal
constraints, long memory/disk latencies

• Reasoning about performance: clock speeds, CPI, 
benchmark suites, performance equations

• Next: assembly instructions
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Instruction Set

• Understanding the language of the hardware is key to understanding
the hardware/software interface

• A program (in say, C) is compiled into an executable that is composed
of machine instructions – this executable must also run on future
machines – for example, each Intel processor reads in the same x86
instructions, but each processor handles instructions differently

• Java programs are converted into portable bytecode that is converted
into machine instructions during execution (just-in-time compilation)

• What are important design principles when defining the instruction
set architecture (ISA)?
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Instruction Set

• Important design principles when defining the
instruction set architecture (ISA):

 keep the hardware simple – the chip must only
implement basic primitives and run fast
 keep the instructions regular – simplifies the

decoding/scheduling of instructions
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A Basic MIPS Instruction

C  code:                                  a = b + c ;

Assembly code: (human-friendly machine instructions)
add   a, b, c      #  a is the sum of b and c

Machine code: (hardware-friendly machine instructions)
00000010001100100100000000100000

Translate the following C code into assembly code:
a = b + c + d + e;
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Example

C code    a = b + c + d + e;
translates into the following assembly code:

add  a, b, c                    add  a, b, c
add  a, a, d         or        add  f, d, e
add  a, a, e                    add  a, a, f

• Instructions are simple: fixed number of operands (unlike C)
• A single line of C code is converted into multiple lines of
assembly code

• Some sequences are better than others… the second
sequence needs one more (temporary) variable  f



20

Subtract Example

C code    f = (g + h) – (i + j);

Assembly code translation with only add and sub instructions:
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Subtract Example

C code    f = (g + h) – (i + j);

translates into the following assembly code:

add  t0, g, h                add  f, g, h  
add  t1,  i, j         or     sub   f, f, i
sub  f,   t0, t1              sub   f, f, j

• Each version may produce a different result because
floating-point operations are not necessarily
associative and commutative… more on this later
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Title

• Bullet
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