
1

Lecture 2: Performance, MIPS ISA

• Today’s topics:

 Performance equations
 MIPS instructions

• Reminder: canvas and class webpage:
http://www.cs.utah.edu/~rajeev/cs3810/

• Reminder: sign up for the mailing list csece3810

• See info on TA office hours on class webpage

• From your classmate, Jeremy: www.UteSwap.com

2

Performance Metrics

• Possible measures:
 response time – time elapsed between start and end

of a program
 throughput – amount of work done in a fixed time

• The two measures are usually linked
 A faster processor will improve both
 More processors will likely only improve throughput
 Some policies will improve throughput and worsen

response time

• What influences performance?

3

Execution Time

Consider a system X executing a fixed workload W

PerformanceX = 1 / Execution timeX

Execution time = response time = wall clock time
- Note that this includes time to execute the workload
as well as time spent by the operating system
co-ordinating various events

The UNIX “time” command breaks up the wall clock time
as user and system time

4

Speedup and Improvement

• System X executes a program in 10 seconds, system Y
executes the same program in 15 seconds

• System X is 1.5 times faster than system Y

• The speedup of system X over system Y is 1.5 (the ratio)

• The performance improvement of X over Y is
1.5 -1 = 0.5 = 50%

• The execution time reduction for the program, compared to
Y is (15-10) / 15 = 33%
The execution time increase, compared to X is
(15-10) / 10 = 50%

5

A Primer on Clocks and Cycles

6

Performance Equation - I

CPU execution time = CPU clock cycles x Clock cycle time
Clock cycle time = 1 / Clock speed

If a processor has a frequency of 3 GHz, the clock ticks
3 billion times in a second – as we’ll soon see, with each
clock tick, one or more/less instructions may complete

If a program runs for 10 seconds on a 3 GHz processor,
how many clock cycles did it run for?

If a program runs for 2 billion clock cycles on a 1.5 GHz
processor, what is the execution time in seconds?

7

Performance Equation - II

CPU clock cycles = number of instrs x avg clock cycles
per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time x number of instrs x avg CPI

If a 2 GHz processor graduates an instruction every third cycle,
how many instructions are there in a program that runs for
10 seconds?

8

Factors Influencing Performance

Execution time = clock cycle time x number of instrs x avg CPI

• Clock cycle time: manufacturing process (how fast is each
transistor), how much work gets done in each pipeline stage
(more on this later)

• Number of instrs: the quality of the compiler and the
instruction set architecture

• CPI: the nature of each instruction and the quality of the
architecture implementation

9

Example

Execution time = clock cycle time x number of instrs x avg CPI

Which of the following two systems is better?

• A program is converted into 4 billion MIPS instructions by a
compiler ; the MIPS processor is implemented such that
each instruction completes in an average of 1.5 cycles and
the clock speed is 1 GHz

• The same program is converted into 2 billion x86 instructions;
the x86 processor is implemented such that each instruction
completes in an average of 6 cycles and the clock speed is
1.5 GHz

10

Benchmark Suites

• Each vendor announces a SPEC rating for their system
 a measure of execution time for a fixed collection of

programs
 is a function of a specific CPU, memory system, IO

system, operating system, compiler
 enables easy comparison of different systems

The key is coming up with a collection of relevant programs

11

SPEC CPU

• SPEC: System Performance Evaluation Corporation, an industry
consortium that creates a collection of relevant programs

• The 2006 version includes 12 integer and 17 floating-point applications

• The SPEC rating specifies how much faster a system is, compared to
a baseline machine – a system with SPEC rating 600 is 1.5 times
faster than a system with SPEC rating 400

• Note that this rating incorporates the behavior of all 29 programs – this
may not necessarily predict performance for your favorite program!

12

Deriving a Single Performance Number

How is the performance of 29 different apps compressed
into a single performance number?

• SPEC uses geometric mean (GM) – the execution time
of each program is multiplied and the Nth root is derived

• Another popular metric is arithmetic mean (AM) – the
average of each program’s execution time

• Weighted arithmetic mean – the execution times of some
programs are weighted to balance priorities

13

Amdahl’s Law

• Architecture design is very bottleneck-driven – make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

• Example: a web server spends 40% of time in the CPU
and 60% of time doing I/O – a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) – Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66)

14

Common Principles

• Amdahl’s Law

• Energy: systems leak energy even when idle

• Energy: performance improvements typically also result
in energy improvements

• 90-10 rule: 10% of the program accounts for 90% of
execution time

• Principle of locality: the same data/code will be used
again (temporal locality), nearby data/code will be
touched next (spatial locality)

15

Recap

• Knowledge of hardware improves software quality:
compilers, OS, threaded programs, memory management

• Important trends: growing transistors, move to multi-core,
slowing rate of performance improvement, power/thermal
constraints, long memory/disk latencies

• Reasoning about performance: clock speeds, CPI,
benchmark suites, performance equations

• Next: assembly instructions

16

Instruction Set

• Understanding the language of the hardware is key to understanding
the hardware/software interface

• A program (in say, C) is compiled into an executable that is composed
of machine instructions – this executable must also run on future
machines – for example, each Intel processor reads in the same x86
instructions, but each processor handles instructions differently

• Java programs are converted into portable bytecode that is converted
into machine instructions during execution (just-in-time compilation)

• What are important design principles when defining the instruction
set architecture (ISA)?

17

Instruction Set

• Important design principles when defining the
instruction set architecture (ISA):

 keep the hardware simple – the chip must only
implement basic primitives and run fast
 keep the instructions regular – simplifies the

decoding/scheduling of instructions

18

A Basic MIPS Instruction

C code: a = b + c ;

Assembly code: (human-friendly machine instructions)
add a, b, c # a is the sum of b and c

Machine code: (hardware-friendly machine instructions)
00000010001100100100000000100000

Translate the following C code into assembly code:
a = b + c + d + e;

19

Example

C code a = b + c + d + e;
translates into the following assembly code:

add a, b, c add a, b, c
add a, a, d or add f, d, e
add a, a, e add a, a, f

• Instructions are simple: fixed number of operands (unlike C)
• A single line of C code is converted into multiple lines of
assembly code

• Some sequences are better than others… the second
sequence needs one more (temporary) variable f

20

Subtract Example

C code f = (g + h) – (i + j);

Assembly code translation with only add and sub instructions:

21

Subtract Example

C code f = (g + h) – (i + j);

translates into the following assembly code:

add t0, g, h add f, g, h
add t1, i, j or sub f, f, i
sub f, t0, t1 sub f, f, j

• Each version may produce a different result because
floating-point operations are not necessarily
associative and commutative… more on this later

22

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

