Lecture 14: FSM and Basic CPU Design

e Today'’s topics:

= Finite state machines
= Single-cycle CPU

 Reminder: midterm on Tue 10/24
* will cover Chapters 1-4, App A, B
» shorter than last year
= if you understand all slides, assignments, you will
ace 90% of the test



Sequential Circults

« \We want the clock to act like a start and stop signal — a “latch” is
a storage device that stores its inputs at a rising clock edge and
this storage will not change until the next rising clock edge
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Finite State Machine

* A sequential circuit is described by a variation of a truth
table — a finite state diagram (hence, the circuit is also
called a finite state machine)

* Note that state is updated only on a clock edge
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State Diagrams

e Each state is shown with a circle, labeled with the state
value — the contents of the circle are the outputs

* An arc represents a transition to a different state, with the
iInputs indicated on the label
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3-Bit Counter

« Consider a circuit that stores a number and increments the value on
every clock edge — on reaching the largest value, it starts again from 0

Draw the state diagram:
= How many states?
* How many inputs?



3-Bit Counter

« Consider a circuit that stores a number and increments the value on
every clock edge — on reaching the largest value, it starts again from 0

Draw the state diagram:
= How many states?
* How many inputs?
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Traffic Light Controller

* Problem description: A traffic light with only green and red; either the
North-South road has green or the East-West road has green (both
can’t be red); there are detectors on the roads to indicate if a car is
on the road; the lights are updated every 30 seconds; a light need
change only if a car is waiting on the other road

State Transition Table:
How many states?
How many inputs?
How many outputs?



State Transition Table

* Problem description: A traffic light with only green and red; either the
North-South road has green or the East-West road has green (both
can’t be red); there are detectors on the roads to indicate if a car is
on the road; the lights are updated every 30 seconds; a light must
change only if a car is waiting on the other road

State Transition Table:
CurrState InputEW  InputNS NextState=Output
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State Diagram

State Transition Table:

CurrState InputEW  InputNS NextState=Output
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Basic MIPS Architecture

* Now that we understand clocks and storage of states,
we’ll design a simple CPU that executes:

* pasic math (add, sub, and, or, slt)
* memory access (lw and sw)
* pranch and jump instructions (beqg and j)
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Implementation Overview

* We need memory
* to store instructions
" to store data
» for now, let’'s make them separate units

* We need registers, ALU, and a whole lot of control logic
 CPU operations common to all instructions:
* use the program counter (PC) to pull instruction out

of instruction memory
* read register values
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View from 30,000 Feet
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« What is the role of the Add units?

« Explain the inputs to the data memory unit
e Explain the inputs to the ALU

« Explain the inputs to the register unit 12



Clocking Methodology
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* Which of the above units need a clock?
* What is being saved (latched) on the rising edge of the clock?
Keep in mind that the latched value remains there for an entire cycllg,\



Implementing R-type Instructions

e Instructions of the form add $t1, $t2, $t3
« Explain the role of each signal
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Implementing Loads/Stores

e Instructions of the form |w $t1, 8($t2) and sw $t1, 8($t2)
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Implementing J-type Instructions

e Instructions of the form beq $t1, $t2, offset
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View from 10,000 Feet
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View from 5,000 Feet

Instrucsan [31-29] |

Inetruction [25-21]
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Single Vs. Multi-Cycle Machine

* In this implementation, every instruction requires one
cycle to complete = cycle time = time taken for the
slowest instruction

* If the execution was broken into multiple (faster)
cycles, the shorter instructions can finish sooner

Cycle time = 20 ns Cycle time =5 ns
« > —
Load « 1 cycle Load « 4 cycles
Add:leCIe: Add:SCyCIeS:
Beq <1c_yclg Beq <Zc_yclgs

Time for a load, add, and beq = 60 ns 45ns
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