Lecture 14: FSM and Basic CPU Design

e Today'’s topics:

= Finite state machines
= Single-cycle CPU

 Reminder: midterm on Tue 10/24
* will cover Chapters 1-4, App A, B
» shorter than last year
= if you understand all slides, assignments, you will
ace 90% of the test

Sequential Circults

« \We want the clock to act like a start and stop signal — a “latch” is
a storage device that stores its inputs at a rising clock edge and
this storage will not change until the next rising clock edge

Clock
¥

Inputs

Latch

| Combinational

Circuit

Clock
¥

Outputs

»

| Combinational

Circuit

Latch

Finite State Machine

* A sequential circuit is described by a variation of a truth
table — a finite state diagram (hence, the circuit is also
called a finite state machine)

* Note that state is updated only on a clock edge

L Next
lock > Current Next-sf[ate state
Cloc | State Function

Outputs
|nputs Output p S
Function

State Diagrams

e Each state is shown with a circle, labeled with the state
value — the contents of the circle are the outputs

* An arc represents a transition to a different state, with the
iInputs indicated on the label

[
o
[

This is a state diagram for ?

3-Bit Counter

« Consider a circuit that stores a number and increments the value on
every clock edge — on reaching the largest value, it starts again from 0

Draw the state diagram:
= How many states?
* How many inputs?

3-Bit Counter

« Consider a circuit that stores a number and increments the value on
every clock edge — on reaching the largest value, it starts again from 0

Draw the state diagram:
= How many states?
* How many inputs?

oo 001 010 011 100 101 110 111

Traffic Light Controller

* Problem description: A traffic light with only green and red; either the
North-South road has green or the East-West road has green (both
can’t be red); there are detectors on the roads to indicate if a car is
on the road; the lights are updated every 30 seconds; a light need
change only if a car is waiting on the other road

State Transition Table:
How many states?
How many inputs?
How many outputs?

State Transition Table

* Problem description: A traffic light with only green and red; either the
North-South road has green or the East-West road has green (both
can’t be red); there are detectors on the roads to indicate if a car is
on the road; the lights are updated every 30 seconds; a light must
change only if a car is waiting on the other road

State Transition Table:
CurrState InputEW InputNS NextState=Output

mmmmZ2ZZZ2
P FRPOORFEF OO
P ORFRPORFRLRORFO
ZMzZzmMmmmZ2Z2

State Diagram

State Transition Table:

CurrState InputEW InputNS NextState=Output
N 0 0 N
N 0 1 N
N 1 0 E
N 1 1 E
E 0 0 E
E 0 1 N
E 1 0 E
E 1 1 N

EWcar
e S
MSgraen Ewpgreen
= MEcar et
«.__'. "'H.I
Lacer ri I

A / EWica / Nicar

Basic MIPS Architecture

* Now that we understand clocks and storage of states,
we’ll design a simple CPU that executes:

* pasic math (add, sub, and, or, slt)
* memory access (lw and sw)
* pranch and jump instructions (beqg and j)

10

Implementation Overview

* We need memory
* to store instructions
" to store data
» for now, let’'s make them separate units

* We need registers, ALU, and a whole lot of control logic
 CPU operations common to all instructions:
* use the program counter (PC) to pull instruction out

of instruction memory
* read register values

11

View from 30,000 Feet

s -
W) L b Note: we haven't bothered
S s showing multiplexors
-‘-d'!;; PR
i "
ML Dwata "“\I
Angisier # h |
- PC e Adovess Inatuction Raglsiors J}“'-"-LL' | Ackdrass
Aogister # | Data
Instruction -q-l—l-/ memary T
MOy RAnglsier # ‘
« Data

« What is the role of the Add units?

« Explain the inputs to the data memory unit
e Explain the inputs to the ALU

« Explain the inputs to the register unit 12

Clocking Methodology

s F —
e
5 -.._- [
> = 5
[
-
P
LT Owmta ."'\I
Hn:]MH# L I
- PO e Adcvess Instruction Ragisinrs J}“'-"-LL' | Address
Aogistes # | Data
Instruction —'—I—h-/ -
Y Amgister # ‘
= Cals

* Which of the above units need a clock?
* What is being saved (latched) on the rising edge of the clock?
Keep in mind that the latched value remains there for an entire cycllg,\

Implementing R-type Instructions

e Instructions of the form add $t1, $t2, $t3
« Explain the role of each signal

5 H:EE:] - | 'l'. | CEHE KL
= ragistar 1 o Y b
cdasa 1 .
Regeer /! .5 Raad
Fill IFiDeTE 4 reystar 2
= Dats
5 Ly Tepisters
; reganar Hiaad o~
- dada 2 ———— —_— -___.-
0 . Wirlie e
i Data

8. Ragshars b, ALU

14

Implementing Loads/Stores

e Instructions of the form |w $t1, 8($t2) and sw $t1, 8($t2)

.5 | Fiesd | ALL commikr
J"'-.—"" I'B#E‘:Hr'l th:u;' b w--__:___
Regisier 5 Read data 1] e
I'u.IrI'H:I-EITH-‘:. ihr"_|'13:|;|5|:|5|r;" : Zarg |—e
5 | write /A A
i
Data { —e Wi¥liE 4
8. Ragshars Raad
—= Addrass P
Calp
Where does this input come from? ____ mu —
a [Cats MEmory L

Implementing J-type Instructions

e Instructions of the form beq $t1, $t2, offset

=

register 1

registar 2

Wit
register

Wi'rite

Reglsisra

oala 2

He N

i
18 |

N
w_o Sign
‘“'Imm

o

| 32
=
|

16

View from 10,000 Feet

- ‘\\\ = -'::.___h_l
l B "
>A|:’d - e "
N
— b ALU
; / 2 Add it .
,_{f Shift | -
N il =
| Faad AL LIS &1L erpsiirsd i
Arag : | e .
= P -e= ” reg e 1 Faad '—-H"-q___ keI
Haad data 1 — : |
radnchon regEler 2 Zerg pom Jusarey
| (FARTS bogiste Hiaad e ALL Ay e Raard “
meimary = _— .
| == 'I'I'l'l'l:ﬂ _____ll " .r.l
dala Dita i
Fegiit - Wit msmory
o cinn
16 |III E'l'l'ﬂ III 32 hairHand
x.'“'li-lll .m Il_""-_
N/ 17
art

View from 5,000 Feet

Instrucsan [31-29] |

Inetruction [25-21]

Heti D |

B ghch

="

ALLl

reaus

| M TI'=_|

1

&[Sl !l'.F i
'i:ﬂl‘llil‘-'l !

————

1’1.'1 ity
|

R

Instruction [20-16]

register 1

| Fmen e

MEiTuGEn | 1511

mamary 3

ragisisr 2

g o F
nagister il
Wika
dats Reglsters

Irstruction [15-03

”"“w

Wrike i = [T

B

'IF":.'TI rlion [B=0]

‘_ COEIF Pl

S

ALL -_

Illlllull 1 mw

oaiA

18

Single Vs. Multi-Cycle Machine

* In this implementation, every instruction requires one
cycle to complete = cycle time = time taken for the
slowest instruction

* If the execution was broken into multiple (faster)
cycles, the shorter instructions can finish sooner

Cycle time = 20 ns Cycle time =5 ns
« > —
Load « 1 cycle Load « 4 cycles
Add:leCIe: Add:SCyCIeS:
Beq <1c_yclg Beq <Zc_yclgs

Time for a load, add, and beq = 60 ns 45ns

Title

e Bullet

20

