
1

Lecture 12: Hardware for Arithmetic

• Today’s topics:

� Designing an ALU
� Carry-lookahead adder

• Reminder: Assignment 5 will be posted in a couple of
days (due Thursday 10/12), no class on Thursday 10/19,
mid-term exam Tuesday 10/24

2

DeMorgan’s Laws

• A + B = A . B

• A . B = A + B

• Confirm that these are indeed true

3

Sum of Products

• Can represent any logic block with the AND, OR, NOT operators

� Draw the truth table

� For each true output, represent the corresponding inputs
as a product

� The final equation is a sum of these products

A B C E
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

(A . B . C) + (A . C . B) + (C . B . A)

• Can also use “product of sums”
• Any equation can be implemented
with an array of ANDs, followed by
an array of ORs

4

Adder Algorithm

1 0 0 1
0 1 0 1

Sum 1 1 1 0
Carry 0 0 0 1

A B Cin Sum Cout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Truth Table for the above operations:

5

Adder Algorithm

1 0 0 1
0 1 0 1

Sum 1 1 1 0
Carry 0 0 0 1

A B Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Truth Table for the above operations:

Equations:
Sum = Cin . A . B +

B . Cin . A +
A . Cin . B +
A . B . Cin

Cout = A . B . Cin +
A . B . Cin +
A . Cin . B +
B . Cin . A

= A . B +
A . Cin +
B . Cin

6

Carry Out Logic

Equations:
Sum = Cin . A . B +

B . Cin . A +
A . Cin . B +
A . B . Cin

Cout = A . B . Cin +
A . B . Cin +
A . Cin . B +
B . Cin . A

= A . B +
A . Cin +
B . Cin

7

1-Bit ALU with Add, Or, And

• Multiplexor selects between Add, Or, And operations

8

32-bit Ripple Carry Adder

1-bit ALUs are connected
“in series” with the
carry-out of 1 box
going into the carry-in
of the next box

9

Incorporating Subtraction

10

Incorporating Subtraction

Must invert bits of B and add a 1
• Include an inverter
• CarryIn for the first bit is 1
• The CarryIn signal (for the

first bit) can be the same
as the Binvert signal

11

Incorporating NOR

12

Incorporating NOR

13

Incorporating slt

14

Incorporating slt

• Perform a – b and check
the sign

• New signal (Less) that
is zero for ALU boxes
1-31

• The 31st box has a unit
to detect overflow and
sign – the sign bit
serves as the Less
signal for the 0th box

15

Incorporating beq

• Perform a – b and
confirm that the
result is all zero’s

16

Control Lines

What are the values
of the control lines

and what operations
do they correspond to?

17

Control Lines

What are the values
of the control lines

and what operations
do they correspond to?

Ai Bn Op
AND 0 0 00
OR 0 0 01
Add 0 0 10
Sub 0 1 10
SLT 0 1 11
NOR 1 1 00

18

Speed of Ripple Carry

• The carry propagates thru every 1-bit box: each 1-bit box sequentially
implements AND and OR – total delay is the time to go through 64 gates!

• We’ve already seen that any logic equation can be expressed as the
sum of products – so it should be possible to compute the result by
going through only 2 gates!

• Caveat: need many parallel gates and each gate may have a very
large number of inputs – it is difficult to efficiently build such large
gates, so we’ll find a compromise:

� moderate number of gates

� moderate number of inputs to each gate

� moderate number of sequential gates traversed

19

Computing CarryOut

CarryIn1 = b0.CarryIn0 + a0.CarryIn0 + a0.b0
CarryIn2 = b1.CarryIn1 + a1.CarryIn1 + a1.b1

= b1.b0.c0 + b1.a0.c0 + b1.a0.b0 +
a1.b0.c0 + a1.a0.c0 + a1.a0.b0 + a1.b1

…
CarryIn32 = a really large sum of really large products

• Potentially fast implementation as the result is computed
by going thru just 2 levels of logic – unfortunately, each
gate is enormous and slow

20

Generate and Propagate

Equation re-phrased:
Ci+1 = ai.bi + ai.Ci + bi.Ci

= (ai.bi) + (ai + bi).Ci

Stated verbally, the current pair of bits will generate a carry
if they are both 1 and the current pair of bits will propagate
a carry if either is 1

Generate signal = ai.bi
Propagate signal = ai + bi

Therefore, Ci+1 = Gi + Pi . Ci

21

Generate and Propagate

c1 = g0 + p0.c0
c2 = g1 + p1.c1

= g1 + p1.g0 + p1.p0.c0
c3 = g2 + p2.g1 + p2.p1.g0 + p2.p1.p0.c0
c4 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0.c0

Either,
a carry was just generated, or
a carry was generated in the last step and was propagated, or
a carry was generated two steps back and was propagated by both

the next two stages, or
a carry was generated N steps back and was propagated by every

single one of the N next stages

22

Divide and Conquer

• The equations on the previous slide are still difficult to implement as
logic functions – for the 32nd bit, we must AND every single propagate
bit to determine what becomes of c0 (among other things)

• Hence, the bits are broken into groups (of 4) and each group
computes its group-generate and group-propagate

• For example, to add 32 numbers, you can partition the task as a tree

.
. . . .

.

23

P and G for 4-bit Blocks

• Compute P0 and G0 (super-propagate and super-generate) for the
first group of 4 bits (and similarly for other groups of 4 bits)
P0 = p0.p1.p2.p3
G0 = g3 + g2.p3 + g1.p2.p3 + g0.p1.p2.p3

• Carry out of the first group of 4 bits is
C1 = G0 + P0.c0
C2 = G1 + P1.G0 + P1.P0.c0
…

• By having a tree of sub-computations, each AND, OR gate has few
inputs and logic signals have to travel through a modest set of
gates (equal to the height of the tree)

24

Example

Add A 0001 1010 0011 0011
and B 1110 0101 1110 1011

g 0000 0000 0010 0011
p 1111 1111 1111 1011

P 1 1 1 0
G 0 0 1 0

C4 = 1

25

Carry Look-Ahead Adder

• 16-bit Ripple-carry
takes 32 steps

• This design takes
how many steps?

26

Title

• Bullet

