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Lecture 9: Floating Point

• Today’s topics: 

� Division
� IEEE 754 representations
� FP arithmetic

• Reminder: assignment 4 will be posted later today
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Division

1001ten Quotient
Divisor 1000ten |     1001010ten Dividend

-1000
10
101
1010

-1000
10ten Remainder

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient
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Divide Example

• Divide 7ten (0000 0111two)  by  2ten (0010two)

0000 00010000 00010011Same steps as 45

0000 0011
0000 0011
0000 0011

0000 0100
0000 0100
0000 0010

0000
0001
0001

Rem = Rem – Div 
Rem >= 0 

�

shift 1 into Q
Shift Div right
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0000 01110000 01000000Same steps as 13

1111 0111

0000 0111
0000 0111

0001 0000

0001 0000
0000 1000

0000

0000
0000

Same steps as 12

1110 0111
0000 0111
0000 0111

0010 0000
0010 0000
0001 0000

0000
0000
0000

Rem = Rem – Div
Rem < 0 

�

+Div, shift 0 into Q
Shift Div right

1

0000 01110010 00000000Initial values0

RemainderDivisorQuotStepIter
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Efficient Division
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Divisions involving Negatives

• Simplest solution: convert to positive and adjust sign later

• Note that multiple solutions exist for the equation:
Dividend = Quotient x Divisor  +  Remainder

+7   div  +2          Quo =           Rem = 
-7   div  +2          Quo =           Rem = 
+7   div   -2          Quo =           Rem = 
-7   div   -2          Quo =           Rem = 



6

Divisions involving Negatives

• Simplest solution: convert to positive and adjust sign later

• Note that multiple solutions exist for the equation:
Dividend = Quotient x Divisor  +  Remainder

+7   div  +2          Quo = +3          Rem = +1
-7   div  +2          Quo = -3           Rem = -1
+7   div   -2          Quo = -3           Rem = +1
-7   div   -2          Quo = +3          Rem = -1

Convention: Dividend and remainder have the same sign  
Quotient is negative if signs disagree
These rules fulfil the equation above
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Floating Point

• Normalized scientific notation: single non-zero digit to the
left of the decimal (binary) point – example: 3.5 x 109

• 1.010001 x 2-5
two = (1 + 0 x 2-1 + 1 x 2-2 + … + 1 x 2-6) x 2-5

ten

• A standard notation enables easy exchange of data between
machines and simplifies hardware algorithms – the 
IEEE 754 standard defines how floating point numbers
are represented
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Sign and Magnitude Representation

Sign       Exponent                                         Fraction
1 bit          8 bits                                           23 bits

S E F

• More exponent bits 

�

wider range of numbers (not necessarily more
numbers – recall there are infinite real numbers)

• More fraction bits 

�

higher precision

• Register value = (-1)S x F x 2E

• Since we are only representing normalized numbers, we are
guaranteed that the number is of the form 1.xxxx.. 
Hence, in IEEE 754 standard, the 1 is implicit
Register value = (-1)S x (1 + F) x 2E
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Sign and Magnitude Representation

Sign       Exponent                                         Fraction
1 bit          8 bits                                           23 bits

S E F

• Largest number that can be represented:

• Smallest number that can be represented:
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Sign and Magnitude Representation

Sign       Exponent                                         Fraction
1 bit          8 bits                                           23 bits

S E F

• Largest number that can be represented: 2.0 x 2128 = 2.0 x 1038

• Smallest number that can be represented: 2.0 x 2-128 = 2.0 x 10-38

• Overflow: when representing a number larger than the one above;
Underflow: when representing a number smaller than the one above

• Double precision format: occupies two 32-bit registers:
Largest:                                  Smallest:

Sign       Exponent                                         Fraction
1 bit          11 bits                                          52 bits

S E F
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Details

• The number “0” has a special code so that the implicit 1 does not
get added: the code is all 0s
(it may seem that this takes up the representation for 1.0, but
given how the exponent is represented, we’ll soon see that
that’s not the case)

• The largest exponent value (with zero fraction) represents +/- infinity

• The largest exponent value (with non-zero fraction) represents
NaN (not a number) – for the result of 0/0 or (infinity minus infinity)
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Exponent Representation

• To simplify sort, sign was placed as the first bit

• For a similar reason, the representation of the exponent is also
modified: in order to use integer compares, it would be preferable to
have the smallest exponent as 00…0 and the largest exponent as 11…1

• This is the biased notation, where a bias is subtracted from the
exponent field to yield the true exponent

• IEEE 754 single-precision uses a bias of 127  (since the exponent
must have values between -127 and 128)…double precision uses 
a bias of 1023

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)
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Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  -0.75ten in single and double-precision formats

Single:  (1 + 8 + 23)

Double: (1 + 11 + 52)

• What decimal number is represented by the following
single-precision number?
1   1000 0001    01000…0000
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Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  -0.75ten in single and double-precision formats

Single:  (1 + 8 + 23)
1   0111 1110  1000…000

Double: (1 + 11 + 52)
1   0111 1111 110    1000…000

• What decimal number is represented by the following
single-precision number?
1   1000 0001    01000…0000

-5.0
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FP Addition

• Consider the following decimal example (can maintain
only 4 decimal digits and 2 exponent digits)

9.999  x 101 +     1.610 x 10-1

Convert to the larger exponent:
9.999  x 101 +     0.016 x 101

Add
10.015  x 101

Normalize
1.0015  x 102

Check for overflow/underflow
Round
1.002  x 102

Re-normalize
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FP Addition

• Consider the following decimal example (can maintain
only 4 decimal digits and 2 exponent digits)

9.999  x 101 +     1.610 x 10-1

Convert to the larger exponent:
9.999  x 101 +     0.016 x 101

Add
10.015  x 101

Normalize
1.0015  x 102

Check for overflow/underflow
Round
1.002  x 102

Re-normalize

If we had more fraction bits,
these errors would be minimized
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FP Multiplication

• Similar steps:
� Compute exponent  (careful!)
� Multiply significands (set the binary point correctly)
� Normalize
� Round (potentially re-normalize)
� Assign sign



18

MIPS Instructions

• The usual add.s, add.d, sub, mul, div

• Comparison instructions: c.eq.s, c.neq.s, c.lt.s….
These comparisons set an internal bit in hardware that
is then inspected by branch instructions: bc1t, bc1f

• Separate register file $f0 - $f31  :  a double-precision
value is stored in (say) $f4-$f5 and is referred to by $f4

• Load/store instructions (lwc1, swc1) must still use
integer registers for address computation
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Code Example

float  f2c (float fahr)
{

return ((5.0/9.0) * (fahr – 32.0));
}

(argument fahr is stored in $f12)
lwc1   $f16, const5($gp)
lwc1   $f18, const9($gp)
div.s   $f16, $f16, $f18
lwc1   $f18, const32($gp)
sub.s  $f18, $f12, $f18
mul.s  $f0, $f16, $f18
jr        $ra
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Title

• Bullet


