Lecture 8: Binary Multiplication & Division

e Today'’s topics:

= Addition/Subtraction
= Multiplication
= Division

 Reminder: get started early on assignment 3

2's Complement — Signed Numbers

0000 0000 0000 0000 0000 0000 0000 0000, = O
0000 0000 0000 0000 0000 0000 0000 0001y, = L.,
01111111 1111 1111 1111 1111 1111 1111, = 23!-1
1000 0000 0000 0000 0000 0000 0000 0000, = -2531
1000 0000 0000 0000 0000 0000 0000 0001, = ~(23! — 1)
1000 0000 0000 0000 0000 0000 0000 0010, = ~(23! — 2)
11111111 1111 1111 1111 1111 1111 1110,,,, = -2
11111111 1111 1111 1111 1111 1111 1111, =-1

Why is this representation favorable?
Consider the sumof 1and -2 we get -1
Consider the sumof 2and -1 we get +1

This format can directly undergo addition without any conversions!

Each number represents the quantity
Xgq =231 + X50 230 + X, 229 + ... + X, 21 + X, 20

Alternative Representations

* The following two (intuitive) representations were discarded
because they required additional conversion steps before
arithmetic could be performed on the numbers

* sign-and-magnitude: the most significant bit represents
+/- and the remaining bits express the magnitude

* one’s complement: -x is represented by inverting all
the bits of x

Both representations above suffer from two zeroes

Addition and Subtraction

e Addition is similar to decimal arithmetic

 For subtraction, simply add the negative number — hence,
subtract A-B involves negating B’s bits, adding 1 and A

0 0 o 1 1 1
0 o o 1 1 o
@ @ o @1 Mmoo W

- (@

Overflows

 For an unsigned number, overflow happens when the last carry (1)
cannot be accommodated

* For a sighed number, overflow happens when the most significant bit
IS not the same as every bit to its left
» when the sum of two positive numbers is a negative result
= when the sum of two negative numbers is a positive result
* The sum of a positive and negative number will never overflow

 MIPS allows addu and subu instructions that work with unsigned
Integers and never flag an overflow — to detect the overflow, other
Instructions will have to be executed

Multiplication Example

Multiplicand 1000
Multiplier X 1001

Product 1001000

ten

In every step
e multiplicand is shifted
 next bit of multiplier is examined (also a shifting step)
o if this bit is 1, shifted multiplicand is added to the product

HW Algorithm 1

——
MuSphcand
Shil| lefy
lﬂ oils
T e
b4 o Miittigliar
B4-bh ALL Shilt right
32 bite \
Prodhct Gontrol s)
Write
I &4 bits

In every step
e multiplicand is shifted

 next bit of multiplier is examined (also a shifting step)
o if this bit is 1, shifted multiplicand is added to the product

HW Algorithm 2

AN PEEEE

e 32-bit ALU and multiplicand is untouched

 the sum keeps shifting right

o at every step, number of bits in product + multiplier = 64,
hence, they share a single 64-bit register

Notes

e The previous algorithm also works for signed numbers
(negative numbers in 2's complement form)

* We can also convert negative numbers to positive, multiply
the magnitudes, and convert to negative if signs disagree

* The product of two 32-bit numbers can be a 64-bit number
-- hence, in MIPS, the product is saved in two 32-bit
registers

MIPS Instructions

mult $s2, $s3 computes the product and stores
it in two “internal” registers that

can be referred to as hi and lo

mfhi $s0 moves the value in hi into $s0
mflo $sl moves the value in lo into $s1

Similarly for multu

10

Fast Algorithm

Mpliee? « Moand Mpler « Moeard
|

ptarz Mosnd | The previous algorithm
{ requires a clock to ensure that
the earlier addition has

mﬂrﬂ]mw " completed before shifting
R A
B « This algorithm can quickly set
Yo up most inputs — it then has to
wait for the result of each add
e to propagate down - faster
'I JMJ{ because no clock is involved
R g
l -- Note: high transistor cost
32 big T fl"'""'

|
ProcuclEl. A2 Product 31 - Produc? Produc Praductd 11

Division

1001, Quotient
1001010 Dividend
-1000
10

101
1010
-1000
10

Divisor 1000

ten | ten

ten Remainder

At every step,
e shift divisor right and compare it with current dividend
o if divisor is larger, shift O as the next bit of the quotient
o if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient 12

Division

1001, Quotient
1001010 Dividend

Divisor 1000

ten | ten

0001001010 0001001010 0000001010 0000001010
100000000000 - 0001000000~ 0000100000->0000001000
Quo: O 000001 0000010 000001001

At every step,
e shift divisor right and compare it with current dividend
o if divisor is larger, shift O as the next bit of the quotient
o if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient 13

Divide Example

e Divide 7., (0000 O111,,,) by 2., (0010,,,)

Iter

Step

Quot

Divisor

Remainder

0

Initial values

1

14

Divide Example

e Divide 7., (0000 O111,,,) by 2., (0010,,,)

Iter Step Quot Divisor Remainder
0 Initial values 0000 | 0010 0000 | 00000111
1 Rem = Rem — Div 0000 | 00100000 | 11100111

Rem < 0 =» +Div, shift 0 into Q 0000 | 0010 0000 | 00000111

Shift Div right 0000 | 0001 0000 | 00000111

2 Same steps as 1 0000 | 00010000 | 11110111
0000 | 0001 0000 | 00000111

0000 | 0000 1000 | 00000111

3 | Same stepsasl 0000 | 0000 0100 | 00000111
4 | Rem =Rem — Div 0000 | 0000 0100 | 0000 0011
Rem >=0 =» shift 1into Q 0001 | 0000 0100 | 0000 0011

Shift Div right 0001 | 0000 0010 | 0000 0011

5 | Same steps as 4 0011 | 0000 0001 | 0000 0001

5

Hardware for Division

—
Ceisor
E-‘-h'rlt-"'ru:h1|-<—

&4 hils

A comparison requires a subtract; the sign of the result is
examined; if the result is negative, the divisor must be added back

16

Efficient Division

—

Do
Shift right

I

lﬁ-nm

b
N

£id hils

f

Chaatisnl
Shiff left

=g s
| LA il e
Hﬂhﬂ:'ﬂﬁl'rl' ’r :: Jis{ =
2t e e

B4 bits

A bilg

U

17

Divisions involving Negatives

e Simplest solution: convert to positive and adjust sign later

* Note that multiple solutions exist for the equation:
Dividend = Quotient x Divisor + Remainder

+7 div +2 Quo = Rem =
-7 div +2 Quo = Rem =
+7 div -2 Quo = Rem =

-7 div -2 Quo = Rem =

Divisions involving Negatives

e Simplest solution: convert to positive and adjust sign later

* Note that multiple solutions exist for the equation:
Dividend = Quotient x Divisor + Remainder

+7
-7
+7
-7

div +2
div +2
div -2
div -2

Quo = +3
Quo = -3
Quo = -3
Quo = +3

Rem = +1
Rem =-1
Rem = +1
Rem =-1

Convention: Dividend and remainder have the same sign

Quotient is negative if signs disagree
These rules fulfil the equation above

19

Title

e Bullet

20

