Lecture 8: Binary Multiplication & Division - Today's topics: - Addition/Subtraction - Multiplication - Division - Reminder: get started early on assignment 3 # 2's Complement – Signed Numbers ``` \begin{array}{c} 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ _{two} = 0_{ten} \\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ _{two} = 1_{ten} \\ \dots \\ 0111\ 11111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 11111\ 11111\ 11111\ 1 ``` Why is this representation favorable? Consider the sum of 1 and -2 we get -1 Consider the sum of 2 and -1 we get +1 This format can directly undergo addition without any conversions! Each number represents the quantity $$x_{31} - 2^{31} + x_{30} 2^{30} + x_{29} 2^{29} + ... + x_1 2^1 + x_0 2^0$$ ### Alternative Representations - The following two (intuitive) representations were discarded because they required additional conversion steps before arithmetic could be performed on the numbers - sign-and-magnitude: the most significant bit represents +/- and the remaining bits express the magnitude - one's complement: -x is represented by inverting all the bits of x Both representations above suffer from two zeroes ### Addition and Subtraction - Addition is similar to decimal arithmetic - For subtraction, simply add the negative number hence, subtract A-B involves negating B's bits, adding 1 and A ### **Overflows** - For an unsigned number, overflow happens when the last carry (1) cannot be accommodated - For a signed number, overflow happens when the most significant bit is not the same as every bit to its left - when the sum of two positive numbers is a negative result - when the sum of two negative numbers is a positive result - The sum of a positive and negative number will never overflow - MIPS allows addu and subu instructions that work with unsigned integers and never flag an overflow – to detect the overflow, other instructions will have to be executed # Multiplication Example | Multiplicand
Multiplier | 1000 _{ten}
x 1001 _{ten} | |----------------------------|--| | | 1000 | | | 0000 | | | 1000 | | Product | 1001000 | In every step - multiplicand is shifted - next bit of multiplier is examined (also a shifting step) - if this bit is 1, shifted multiplicand is added to the product ## **HW Algorithm 1** #### In every step - multiplicand is shifted - next bit of multiplier is examined (also a shifting step) - if this bit is 1, shifted multiplicand is added to the product ## HW Algorithm 2 - 32-bit ALU and multiplicand is untouched - the sum keeps shifting right - at every step, number of bits in product + multiplier = 64, hence, they share a single 64-bit register #### **Notes** - The previous algorithm also works for signed numbers (negative numbers in 2's complement form) - We can also convert negative numbers to positive, multiply the magnitudes, and convert to negative if signs disagree - The product of two 32-bit numbers can be a 64-bit number - -- hence, in MIPS, the product is saved in two 32-bit registers ### **MIPS Instructions** | mult | \$s2, \$s3 | computes the product and stores it in two "internal" registers that can be referred to as hi and lo | |--------------|--------------|---| | mfhi
mflo | \$s0
\$s1 | moves the value in hi into \$s0 moves the value in lo into \$s1 | Similarly for multu ## Fast Algorithm - The previous algorithm requires a clock to ensure that the earlier addition has completed before shifting - This algorithm can quickly set up most inputs – it then has to wait for the result of each add to propagate down – faster because no clock is involved - -- Note: high transistor cost ### Division $$\begin{array}{c|c} & \underline{1001_{\text{ten}}} & \text{Quotient} \\ \text{Divisor} & 1000_{\text{ten}} & 1001010_{\text{ten}} & \text{Dividend} \\ & \underline{-1000} \\ & 10 \\ & 101 \\ & 1010 \\ & \underline{-1000} \\ & 10_{\text{ten}} & \text{Remainder} \end{array}$$ #### At every step, - shift divisor right and compare it with current dividend - if divisor is larger, shift 0 as the next bit of the quotient - if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient #### Division #### At every step, - shift divisor right and compare it with current dividend - if divisor is larger, shift 0 as the next bit of the quotient - if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient # Divide Example • Divide 7_{ten} (0000 0111 $_{two}$) by 2_{ten} (0010 $_{two}$) | Iter | Step | Quot | Divisor | Remainder | |------|----------------|------|---------|-----------| | 0 | Initial values | | | | | 1 | | | | | | | | | | | | 2 | | | | | | | | | | | | 3 | | | | | | | | | | | | 4 | | | | | | | | | | | | 5 | | | | | | | | | | | # Divide Example • Divide 7_{ten} (0000 0111_{two}) by 2_{ten} (0010_{two}) | Iter | Step | Quot | Divisor | Remainder | |------|--------------------------------|------|-----------|-----------| | 0 | Initial values | 0000 | 0010 0000 | 0000 0111 | | 1 | Rem = Rem – Div | 0000 | 0010 0000 | 1110 0111 | | | Rem < 0 → +Div, shift 0 into Q | 0000 | 0010 0000 | 0000 0111 | | | Shift Div right | 0000 | 0001 0000 | 0000 0111 | | 2 | Same steps as 1 | 0000 | 0001 0000 | 1111 0111 | | | | 0000 | 0001 0000 | 0000 0111 | | | | 0000 | 0000 1000 | 0000 0111 | | 3 | Same steps as 1 | 0000 | 0000 0100 | 0000 0111 | | 4 | Rem = Rem - Div | 0000 | 0000 0100 | 0000 0011 | | | Rem >= 0 → shift 1 into Q | 0001 | 0000 0100 | 0000 0011 | | | Shift Div right | 0001 | 0000 0010 | 0000 0011 | | 5 | Same steps as 4 | 0011 | 0000 0001 | 0000 0001 | 15 ### Hardware for Division A comparison requires a subtract; the sign of the result is examined; if the result is negative, the divisor must be added back ### **Efficient Division** # Divisions involving Negatives - Simplest solution: convert to positive and adjust sign later - Note that multiple solutions exist for the equation: Dividend = Quotient x Divisor + Remainder ``` +7 div +2 Quo = Rem = -7 div +2 Quo = Rem = +7 div -2 Quo = Rem = -7 div -2 Quo = Rem = ``` ## Divisions involving Negatives - Simplest solution: convert to positive and adjust sign later - Note that multiple solutions exist for the equation: Dividend = Quotient x Divisor + Remainder $$+7 ext{ div } +2 ext{ Quo} = +3 ext{ Rem} = +1$$ $-7 ext{ div } +2 ext{ Quo} = -3 ext{ Rem} = -1$ $+7 ext{ div } -2 ext{ Quo} = -3 ext{ Rem} = +1$ $-7 ext{ div } -2 ext{ Quo} = +3 ext{ Rem} = -1$ Convention: Dividend and remainder have the same sign Quotient is negative if signs disagree These rules fulfil the equation above # Title • Bullet