
1

Lecture 7: Computer Arithmetic

• Today’s topics:

� Chapter 2 wrap-up
� Numerical representations
� Addition and subtraction

• Reminder: Assignment 3 will be posted by tomorrow

2

Compilation Steps

• The front-end: deals mostly with language specific actions
� Scanning: reads characters and breaks them into tokens
� Parsing: checks syntax
� Semantic analysis: makes sure operations/types are

meaningful
� Intermediate representation: simple instructions,

infinite registers, makes few assumptions about hw

• The back-end: optimizations and code generation
� Local optimizations: within a basic block
� Global optimizations: across basic blocks
� Register allocation

3

Dataflow

• Control flow graph: each box represents a basic block and
arcs represent potential jumps between instructions

• For each block, the compiler computes values that were
defined (written to) and used (read from)

• Such dataflow analysis is key to several optimizations:
for example, moving code around, eliminating dead code,
removing redundant computations, etc.

4

Register Allocation

• The IR contains infinite virtual registers – these must be mapped to
the architecture’s finite set of registers (say, 32 registers)

• For each virtual register, its live range is computed (the range
between which the register is defined and used)

• We must now assign one of 32 colors to each virtual register so that
intersecting live ranges are colored differently – can be mapped to the
famous graph coloring problem

• If this is not possible, some values will have to be temporarily spilled
to memory and restored (this is equivalent to breaking a single live
range into smaller live ranges)

5

Graph Coloring

VR1
VR2

VR3
VR4

VR1

VR2

VR4

VR3

VR1

VR2

VR4

VR3

6

High-Level Optimizations

High-level optimizations are usually hardware independent

• Procedure inlining

• Loop unrolling

• Loop interchange, blocking (more on this later when we
study cache/memory organization)

7

Low-Level Optimizations

• Common sub-expression elimination
• Constant propagation
• Copy propagation
• Dead store/code elimination
• Code motion
• Induction variable elimination
• Strength reduction
• Pipeline scheduling

8

Saves on Stack

• Caller saved

� $a0-a3 -- old arguments must be saved before setting new
arguments for the callee

� $ra -- must be saved before the jal instruction over-writes this value

� $t0-t9 -- if you plan to use your temps after the return, save them
note that callees are free to use temps as they please

�

You need not save $s0-s7 as the callee will take care of them

• Callee saved

� $s0-s7 -- before the callee uses such a register, it must save the
old contents since the caller will usually need it on return

� local variables -- space is also created on the stack for variables
local to that procedure

9

Binary Representation

• The binary number

01011000 00010101 00101110 11100111

represents the quantity
0 x 231 + 1 x 230 + 0 x 229 + … + 1 x 20

• A 32-bit word can represent 232 numbers between
0 and 232-1

… this is known as the unsigned representation as
we’re assuming that numbers are always positive

Most significant bit Least significant bit

10

ASCII Vs. Binary

• Does it make more sense to represent a decimal number
in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it
take to represent the number 1,000,000,000 in ASCII
and in binary?

11

ASCII Vs. Binary

• Does it make more sense to represent a decimal number
in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it
take to represent the number 1,000,000,000 in ASCII
and in binary?

In binary: 30 bits (230 > 1 billion)
In ASCII: 10 characters, 8 bits per char = 80 bits

12

Negative Numbers

32 bits can only represent 232 numbers – if we wish to also represent
negative numbers, we can represent 231 positive numbers (incl zero)
and 231 negative numbers

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten

0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

13

2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Why is this representation favorable?
Consider the sum of 1 and -2 …. we get -1
Consider the sum of 2 and -1 …. we get +1

This format can directly undergo addition without any conversions!

Each number represents the quantity
x31 -231 + x30 230 + x29 229 + … + x1 21 + x0 20

14

2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Note that the sum of a number x and its inverted representation x’ always
equals a string of 1s (-1).

x + x’ = -1
x’ + 1 = -x … hence, can compute the negative of a number by
-x = x’ + 1 inverting all bits and adding 1

Similarly, the sum of x and –x gives us all zeroes, with a carry of 1
In reality, x + (-x) = 2n … hence the name 2’s complement

15

Example

• Compute the 32-bit 2’s complement representations
for the following decimal numbers:

5, -5, -6

16

Example

• Compute the 32-bit 2’s complement representations
for the following decimal numbers:

5, -5, -6

5: 0000 0000 0000 0000 0000 0000 0000 0101
-5: 1111 1111 1111 1111 1111 1111 1111 1011
-6: 1111 1111 1111 1111 1111 1111 1111 1010

Given -5, verify that negating and adding 1 yields the
number 5

17

Signed / Unsigned

• The hardware recognizes two formats:

unsigned (corresponding to the C declaration unsigned int)
-- all numbers are positive, a 1 in the most significant bit

just means it is a really large number

signed (C declaration is signed int or just int)
-- numbers can be +/- , a 1 in the MSB means the number

is negative

This distinction enables us to represent twice as many
numbers when we’re sure that we don’t need negatives

18

MIPS Instructions

Consider a comparison instruction:
slt $t0, $t1, $zero

and $t1 contains the 32-bit number 1111 01…01

What gets stored in $t0?

19

MIPS Instructions

Consider a comparison instruction:
slt $t0, $t1, $zero

and $t1 contains the 32-bit number 1111 01…01

What gets stored in $t0?
The result depends on whether $t1 is a signed or unsigned
number – the compiler/programmer must track this and
accordingly use either slt or sltu

slt $t0, $t1, $zero stores 1 in $t0
sltu $t0, $t1, $zero stores 0 in $t0

20

The Bounds Check Shortcut

• Suppose we want to check if 0 <= x < y
and x and y are signed numbers (stored in $a1 and $t2)

The following single comparison can check both conditions
sltu $t0, $a1, $t2
beq $t0, $zero, EitherConditionFails

We know that $t2 begins with a 0
If $a1 begins with a 0, sltu is effectively checking the second condition
If $a1 begins with a 1, we want the condition to fail and coincidentally,

sltu is guaranteed to fail in this case

21

Sign Extension

• Occasionally, 16-bit signed numbers must be converted
into 32-bit signed numbers – for example, when doing an
add with an immediate operand

• The conversion is simple: take the most significant bit and
use it to fill up the additional bits on the left – known as
sign extension

So 210 goes from 0000 0000 0000 0010 to
0000 0000 0000 0000 0000 0000 0000 0010

and -210 goes from 1111 1111 1111 1110 to
1111 1111 1111 1111 1111 1111 1111 1110

22

Alternative Representations

• The following two (intuitive) representations were discarded
because they required additional conversion steps before
arithmetic could be performed on the numbers

� sign-and-magnitude: the most significant bit represents
+/- and the remaining bits express the magnitude

� one’s complement: -x is represented by inverting all
the bits of x

Both representations above suffer from two zeroes

23

Addition and Subtraction

• Addition is similar to decimal arithmetic

• For subtraction, simply add the negative number – hence,
subtract A-B involves negating B’s bits, adding 1 and A

24

Overflows

• For an unsigned number, overflow happens when the last carry (1)
cannot be accommodated

• For a signed number, overflow happens when the most significant bit
is not the same as every bit to its left

� when the sum of two positive numbers is a negative result

� when the sum of two negative numbers is a positive result

� The sum of a positive and negative number will never overflow

• MIPS allows addu and subu instructions that work with unsigned
integers and never flag an overflow – to detect the overflow, other
instructions will have to be executed

25

Title

• Bullet

