
1

Lecture 6: Compilers, the SPIM Simulator

• Today’s topics: 

� SPIM simulator
� The compilation process

• Additional TA hours:
Liqun Cheng, email legion at cs, Office: MEB 2162 
Office hours: Mon/Wed 11-12

TA hours for Josh: Wed 11:45-12:45   (EMCB 130)
TA hours for Devyani: Wed 11:45-12:45 (MEB 3431)



2

IA-32 Instruction Set

• Intel’s IA-32 instruction set has evolved over 20 years –
old features are preserved for software compatibility

• Numerous complex instructions – complicates hardware
design (Complex Instruction Set Computer – CISC)

• Instructions have different sizes, operands can be in
registers or memory, only 8 general-purpose registers,
one of the operands is over-written

• RISC instructions are more amenable to high performance
(clock speed and parallelism) – modern Intel processors
convert IA-32 instructions into simpler micro-operations



3

SPIM

• SPIM is a simulator that reads in an assembly program
and models its behavior on a MIPS processor

• Note that a “MIPS add instruction” will eventually be
converted to an add instruction for the host computer’s
architecture – this translation happens under the hood

• To simplify the programmer’s task, it accepts
pseudo-instructions, large constants, constants in 
decimal/hex formats, labels, etc.

• The simulator allows us to inspect register/memory
values to confirm that our program is behaving correctly



4

Example

This simple program (similar to what we’ve written in class) will run
on SPIM (a “main” label is introduced so SPIM knows where to start)

main:
addi   $t0, $zero, 5
addi   $t1, $zero, 7
add    $t2, $t0, $t1

If we inspect the contents of $t2, we’ll find the number 12



5

User Interface

main:
addi   $t0, $zero, 5
addi   $t1, $zero, 7
add    $t2, $t0, $t1

File add.s
rajeev@trust > Spim

(spim)  read “add.s”
(spim)  run
(spim)  print $10
Reg 10 = 0x0000000c (12)

(spim)  reinitialize
(spim)  read “add.s”
(spim)  step
(spim)  print $8
Reg 8 = 0x00000005  (5)

(spim)  print $9
Reg 9 = 0x00000000  (0)

(spim)  step
(spim)  print $9
Reg 9 = 0x00000007  (7)

(spim)  exit



6

Directives

.text

.globl main
main:

addi   $t0, $zero, 5
addi   $t1, $zero, 7
add    $t2, $t0, $t1
…
jal       swap_proc
jr        $ra

.globl swap_proc
swap_proc:

…

File add.s Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)

This function is visible to other files



7

Directives

.data
.word 5
.word 7
.byte  25
.asciiz  “the answer is”

.text

.globl main
main:

lw       $t0, 0($gp)
lw       $t1, 4($gp)
add    $t2, $t0, $t1
…
jal       swap_proc
jr        $ra

File add.s Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)



8

Labels

.data
in1   .word 5
in2   .word 7
c1    .byte  25
str    .asciiz  “the answer is”
.text
.globl main
main:

lw       $t0, in1
lw       $t1, in2
add    $t2, $t0, $t1
…
jal       swap_proc
jr        $ra

File add.s Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)



9

Endian-ness

Two major formats for transferring values between registers and memory

Memory:  low address  45   7b  87  7f    high address

Little-endian register: the first byte read goes in the low end of the register
Register:   7f   87  7b  45

Most-significant bit                        Least-significant bit

Big-endian register: the first byte read goes in the big end of the register
Register:   45  7b  87  7f

Most-significant bit                         Least-significant bit



10

System Calls

• SPIM provides some OS services: most useful are 
operations for I/O: read, write, file open, file close

• The arguments for the syscall are placed in $a0-$a3

• The type of syscall is identified by placing the appropriate
number in $v0 – 1 for print_int, 4 for print_string, 
5 for read_int, etc.

• $v0 is also used for the syscall’s return value



11

Example Print Routine

.data
str:     .ascii   “the answer is”

.text
li      $v0, 4               # load immediate; 4 is the code for print_string
la     $a0, str            #  the print_string syscall expects the string

#  address as the argument; la is the instruction
#  to load the address of the operand (str)

syscall                     #  SPIM will now invoke syscall-4
li      $v0, 1              #  syscall-1 corresponds to print_int
li      $a0, 5              #  print_int expects the integer as its argument
syscall                     #  SPIM will now invoke syscall-1



12

Example

• Write an assembly program to prompt the user for two numbers and
print the sum of the two numbers



13

Example

.text                                                   .data
.globl main                                        str1:  .asciiz  “Enter 2 numbers:”
main:                                                 str2:  .asciiz  “The sum is ”

li   $v0, 4
la  $a0, str1
syscall
li   $v0, 5
syscall
add  $t0, $v0, $zero
li   $v0, 5
syscall                                
add  $t1, $v0, $zero           
li   $v0, 4       
la  $a0, str2         
syscall
li    $v0, 1
add  $a0, $t1, $t0
syscall



14

Compilation Steps

• The front-end: deals mostly with language specific actions
� Scanning: reads characters and breaks them into tokens
� Parsing: checks syntax
� Semantic analysis: makes sure operations/types are

meaningful
� Intermediate representation: simple instructions,

infinite registers, makes few assumptions about hw

• The back-end: optimizations and code generation
� Local optimizations: within a basic block
� Global optimizations: across basic blocks
� Register allocation



15

Dataflow

• Control flow graph: each box represents a basic block and
arcs represent potential jumps between instructions

• For each block, the compiler computes values that were
defined (written to) and used (read from)

• Such dataflow analysis is key to several optimizations:
for example, moving code around, eliminating dead code,
removing redundant computations, etc.



16

Register Allocation

• The IR contains infinite virtual registers – these must be mapped to
the architecture’s finite set of registers (say, 32 registers)

• For each virtual register, its live range is computed (the range
between which the register is defined and used)

• We must now assign one of 32 colors to each virtual register so that
intersecting live ranges are colored differently – can be mapped to the
famous graph coloring problem 

• If this is not possible, some values will have to be temporarily spilled
to memory and restored (this is equivalent to breaking a single live
range into smaller live ranges)



17

High-Level Optimizations

High-level optimizations are usually hardware independent

• Procedure inlining

• Loop unrolling

• Loop interchange, blocking (more on this later when we
study cache/memory organization) 



18

Low-Level Optimizations

• Common sub-expression elimination
• Constant propagation
• Copy propagation
• Dead store/code elimination
• Code motion
• Induction variable elimination
• Strength reduction
• Pipeline scheduling



19

Title

• Bullet


