Lecture 6: Compilers, the SPIM Simulator

e Today'’s topics:

= SPIM simulator
* The compilation process

« Additional TA hours:
Liqun Cheng, email legion at cs, Office: MEB 2162

Office hours: Mon/Wed 11-12

TA hours for Josh: Wed 11:45-12:45 (EMCB 130)
TA hours for Devyani: Wed 11:45-12:45 (MEB 3431)

|A-32 Instruction Set

o Intel’'s IA-32 instruction set has evolved over 20 years —
old features are preserved for software compatibility

 Numerous complex instructions — complicates hardware
design (Complex Instruction Set Computer — CISC)

e Instructions have different sizes, operands can be in
registers or memory, only 8 general-purpose registers,
one of the operands is over-written

* RISC instructions are more amenable to high performance
(clock speed and parallelism) — modern Intel processors

convert IA-32 instructions into simpler micro-operations)

SPIM

 SPIM is a simulator that reads in an assembly program
and models its behavior on a MIPS processor

* Note that a “MIPS add instruction” will eventually be
converted to an add instruction for the host computer’'s
architecture — this translation happens under the hood

» To simplify the programmer’s task, it accepts
pseudo-instructions, large constants, constants in
decimal/hex formats, labels, etc.

« The simulator allows us to inspect register/memory
values to confirm that our program is behaving correctl)g

Example

This simple program (similar to what we’ve written in class) will run
on SPIM (a “main” label is introduced so SPIM knows where to start)

main:
addi $t0, $zero, 5
addi $t1, $zero, 7
add $t2, $t0, $t1

If we inspect the contents of $t2, we’ll find the number 12

User Interface

rajeev@trust > Spim
File add.s

(spim) read “add.s”

(spim) run

(spim) print $10

Reg 10 = 0x0000000c (12)
(spim) reinitialize

main:
addi $t0, $zero, 5
addi $t1, $zero, 7
add $t2, $t0, $t1

(spim) read “add.s”
(spim) step

(spim) print $8

Reg 8 = 0x00000005 (5)
(spim) print $9

Reg 9 = 0x00000000 (0)
(spim) step

(spim) print $9

Reg 9 = 0x00000007 (7)
(spim) exit

Directives

File add.s Stack
v

text
.globM t
main: Dynamic data (heap)

addi $t0, $zero, 5 \ Static data (globals)
addi $t1, $zero, 7

add $t2, $t0, $t1 Text (instructions)

jal swap_proc
ir $ra | __—This function is visible to other files
.globl swap_proc
swap_proc:

Directives

File add.s

.word 7
byte 25

dext

.globl main

main:

lw $t0, O($gp)
lw $t1, 4($gp)
add $t2, $t0, $t1

jal swap_proc
jr $ra

.data
.WON

Stack
v

t
Dynamic data (heap)

Static data (globals)

.ascliz “the answer is”

Text (instructions)

Labels

File add.s

N2
cl
Str
text
.globl
main:
lw
lw

jal
jr

.data

inl M
.word 7 T
byte 25

.asciiz “the answer is”

add $t2, $t0, $t1

main

$t0, inl
$t1, in2

swap_proc

Stack
v

t
Dynamic data (heap)

Static data (globals)

Text (instructions)

$ra

Endian-ness

Two major formats for transferring values between registers and memory

Memory: low address 45 7b 87 7f high address

Little-endian register: the first byte read goes in the low end of the register
Register: 7f 87 7b 45
Most-significant bit” >\Least-significant bit

Big-endian register: the first byte read goes in the big end of the register
Register. 45 7b 87 71
Most-significant bit” >\Least—significant bit

System Calls

« SPIM provides some OS services: most useful are
operations for 1/O: read, write, file open, file close

* The arguments for the syscall are placed in $a0-$a3
* The type of syscall is identified by placing the appropriate
number in $v0 — 1 for print_int, 4 for print_string,

5 for read_int, etc.

» $vO is also used for the syscall’'s return value

10

Example Print Routine

.data
str: .ascii “the answer is”
text
i $vO, 4 # load immediate; 4 is the code for print_string
la $ao0, str # the print_string syscall expects the string
address as the argument; la is the instruction
to load the address of the operand (str)
syscall # SPIM will now invoke syscall-4
i $vO, 1 # syscall-1 corresponds to print_int
i $a0,5 # print_int expects the integer as its argument

syscall # SPIM will now invoke syscall-1

11

Example

« Write an assembly program to prompt the user for two numbers and
print the sum of the two numbers

12

Example

text .data
.globl main strl: .asciiz “Enter 2 numbers:”
main: str2: .asciiz “The sumis”
i $vO, 4
la $a0, strl
syscall
i $vO, 5
syscall
add $t0, $v0, $zero
i $vO, 5
syscall
add $t1, $v0, $zero
i $vO, 4
la $a0, str2
syscall
i $vO, 1
add $a0, $t1, $t0

13
syscall

Compilation Steps

e The front-end: deals mostly with language specific actions
» Scanning: reads characters and breaks them into tokens
* Parsing: checks syntax
» Semantic analysis: makes sure operations/types are
meaningful
" Intermediate representation: simple instructions,
Infinite registers, makes few assumptions about hw

* The back-end: optimizations and code generation
* Local optimizations: within a basic block
» Global optimizations: across basic blocks
» Register allocation

14

Dataflow

« Control flow graph: each box represents a basic block and
arcs represent potential jumps between instructions

» For each block, the compiler computes values that were
defined (written to) and used (read from)

« Such dataflow analysis is key to several optimizations:

for example, moving code around, eliminating dead code,
removing redundant computations, etc.

15

Register Allocation

e The IR contains infinite virtual registers — these must be mapped to
the architecture’s finite set of registers (say, 32 registers)

» For each virtual register, its live range is computed (the range
between which the register is defined and used)

« We must now assign one of 32 colors to each virtual register so that
Intersecting live ranges are colored differently — can be mapped to the
famous graph coloring problem

o If this is not possible, some values will have to be temporarily spilled

to memory and restored (this is equivalent to breaking a single live
range into smaller live ranges)

16

High-Level Optimizations

High-level optimizations are usually hardware independent
e Procedure inlining

 Loop unrolling

* Loop interchange, blocking (more on this later when we
study cache/memory organization)

17

Low-Level Optimizations

« Common sub-expression elimination
« Constant propagation

« Copy propagation

e Dead store/code elimination

« Code motion

 Induction variable elimination

« Strength reduction

 Pipeline scheduling

18

Title

e Bullet

19

