
1

Lecture 4: Procedure Calls

• Today’s topics:

� Procedure calls
� Large constants
� The compilation process

• Reminder: Assignment 1 is due on Thursday

2

Recap

• The jal instruction is used to jump to the procedure and
save the current PC (+4) into the return address register

• Arguments are passed in $a0-$a3; return values in $v0-$v1

• Since the callee may over-write the caller’s registers,
relevant values may have to be copied into memory

• Each procedure may also require memory space for
local variables – a stack is used to organize the memory
needs for each procedure

3

The Stack

The register scratchpad for a procedure seems volatile –
it seems to disappear every time we switch procedures –
a procedure’s values are therefore backed up in memory
on a stack

Proc A’s values

Proc B’s values

Proc C’s values

…

High address

Low address

Stack grows
this way

Proc A

call Proc B
…
call Proc C

…
return

return
return

4

Example 1

int leaf_example (int g, int h, int i, int j)
{

int f ;
f = (g + h) – (i + j);
return f;

}

5

Example 1

int leaf_example (int g, int h, int i, int j)
{

int f ;
f = (g + h) – (i + j);
return f;

}

leaf_example:
addi $sp, $sp, -12
sw $t1, 8($sp)
sw $t0, 4($sp)
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
lw $t0, 4($sp)
lw $t1, 8($sp)
addi $sp, $sp, 12
jr $ra

Notes:
In this example, the procedure’s
stack space was used for the caller’s
variables, not the callee’s – the compiler
decided that was better.

The caller took care of saving its $ra and
$a0-$a3.

6

Example 2

int fact (int n)
{

if (n < 1) return (1);
else return (n * fact(n-1));

}

7

Example 2

int fact (int n)
{

if (n < 1) return (1);
else return (n * fact(n-1));

}

fact:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
slti $t0, $a0, 1
beq $t0, $zero, L1
addi $v0, $zero, 1
addi $sp, $sp, 8
jr $ra

L1:
addi $a0, $a0, -1
jal fact
lw $a0, 0($sp)
lw $ra, 4($sp)
addi $sp, $sp, 8
mul $v0, $a0, $v0
jr $ra

Notes:
The caller saves $a0 and $ra
in its stack space.
Temps are never saved.

8

Memory Organization

• The space allocated on stack by a procedure is termed the activation
record (includes saved values and data local to the procedure) – frame
pointer points to the start of the record and stack pointer points to the
end – variable addresses are specified relative to $fp as $sp may
change during the execution of the procedure

• $gp points to area in memory that saves global variables
• Dynamically allocated storage (with malloc()) is placed on the heap

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)

9

Dealing with Characters

• Instructions are also provided to deal with byte-sized
and half-word quantities: lb (load-byte), sb, lh, sh

• These data types are most useful when dealing with
characters, pixel values, etc.

• C employs ASCII formats to represent characters – each
character is represented with 8 bits and a string ends in
the null character (corresponding to the 8-bit number 0)

10

Example

Convert to assembly:
void strcpy (char x[], char y[])
{

int i;
i=0;
while ((x[i] = y[i]) != `\0’)
i += 1;

}

11

Example

Convert to assembly:
void strcpy (char x[], char y[])
{

int i;
i=0;
while ((x[i] = y[i]) != `\0’)
i += 1;

}

strcpy:
addi $sp, $sp, -4
sw $s0, 0($sp)
add $s0, $zero, $zero
L1: add $t1, $s0, $a1
lb $t2, 0($t1)
add $t3, $s0, $a0
sb $t2, 0($t3)
beq $t2, $zero, L2
addi $s0, $s0, 1
j L1
L2: lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

12

Large Constants

• Immediate instructions can only specify 16-bit constants

• The lui instruction is used to store a 16-bit constant into
the upper 16 bits of a register… thus, two immediate
instructions are used to specify a 32-bit constant

• The destination PC-address in a conditional branch is
specified as a 16-bit constant, relative to the current PC

• A jump (j) instruction can specify a 26-bit constant; if more
bits are required, the jump-register (jr) instruction is used

13

Starting a Program

C Program

Assembly language program

Object: machine language module Object: library routine (machine language)

Executable: machine language program

Memory

Compiler

Assembler

Linker

Loader

x.c

x.s

x.o x.a, x.so

a.out

14

Role of Assembler

• Convert pseudo-instructions into actual hardware
instructions – pseudo-instrs make it easier to program
in assembly – examples: “move”, “blt”, 32-bit immediate
operands, etc.

• Convert assembly instrs into machine instrs – a separate
object file (x.o) is created for each C file (x.c) – compute
the actual values for instruction labels – maintain info
on external references and debugging information

15

Role of Linker

• Stitches different object files into a single executable

� patch internal and external references
� determine addresses of data and instruction labels
� organize code and data modules in memory

• Some libraries (DLLs) are dynamically linked – the
executable points to dummy routines – these dummy
routines call the dynamic linker-loader so they can
update the executable to jump to the correct routine

16

Full Example – Sort in C

• Allocate registers to program variables
• Produce code for the program body
• Preserve registers across procedure invocations

void sort (int v[], int n)
{

int i, j;
for (i=0; i<n; i+=1) {

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
swap (v,j);

}
}

}

void swap (int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

17

The swap Procedure

• Register allocation: $a0 and $a1 for the two arguments, $t0 for the
temp variable – no need for saves and restores as we’re not using
$s0-$s7 and this is a leaf procedure (won’t need to re-use $a0 and $a1)

swap: sll $t1, $a1, 2
add $t1, $a0, $t1
lw $t0, 0($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)
jr $ra

18

The sort Procedure

• Register allocation: arguments v and n use $a0 and $a1, i and j use
$s0 and $s1; must save $a0 and $a1 before calling the leaf
procedure

• The outer for loop looks like this: (note the use of pseudo-instrs)

move $s0, $zero # initialize the loop
loopbody1: bge $s0, $a1, exit1 # will eventually use slt and beq

… body of inner loop …
addi $s0, $s0, 1
j loopbody1

exit1:
for (i=0; i<n; i+=1) {

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
swap (v,j);

}
}

19

The sort Procedure

• The inner for loop looks like this:

addi $s1, $s0, -1 # initialize the loop
loopbody2: blt $s1, $zero, exit2 # will eventually use slt and beq

sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
bgt $t3, $t4, exit2
… body of inner loop …
addi $s1, $s1, -1
j loopbody2

exit2: for (i=0; i<n; i+=1) {
for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {

swap (v,j);
}

}

20

Saves and Restores

• Since we repeatedly call “swap” with $a0 and $a1, we begin “sort” by
copying its arguments into $s2 and $s3 – must update the rest of the
code in “sort” to use $s2 and $s3 instead of $a0 and $a1

• Must save $ra at the start of “sort” because it will get over-written when
we call “swap”

• Must also save $s0-$s3 so we don’t overwrite something that belongs
to the procedure that called “sort”

21

Saves and Restores

sort: addi $sp, $sp, -20
sw $ra, 16($sp)
sw $s3, 12($sp)
sw $s2, 8($sp)
sw $s1, 4($sp)
sw $s0, 0($sp)
move $s2, $a0
move $s3, $a1

…
move $a0, $s2 # the inner loop body starts here
move $a1, $s1
jal swap
…

exit1: lw $s0, 0($sp)
…

addi $sp, $sp, 20
jr $ra

9 lines of C code
�

35 lines of assembly

22

Relative Performance

Gcc optimization Relative Cycles Instruction CPI
performance count

none 1.00 159B 115B 1.38
O1 2.37 67B 37B 1.79
O2 2.38 67B 40B 1.66
O3 2.41 66B 45B 1.46

• A Java interpreter has relative performance of 0.12, while the
Jave just-in-time compiler has relative performance of 2.13

• Note that the quicksort algorithm is about three orders of
magnitude faster than the bubble sort algorithm (for 100K elements)

23

Title

• Bullet

