
1

Lecture 2: MIPS Instruction Set

• Today’s topic:

� MIPS instructions

• Reminder: sign up for the mailing list cs3810

• Reminder: set up your CADE accounts (EMCB 224)

2

Recap

• Knowledge of hardware improves software quality:
compilers, OS, threaded programs, memory management

• Important trends: growing transistors, move to multi-core,
slowing rate of performance improvement, power/thermal
constraints, long memory/disk latencies

3

Instruction Set

• Understanding the language of the hardware is key to understanding
the hardware/software interface

• A program (in say, C) is compiled into an executable that is composed
of machine instructions – this executable must also run on future
machines – for example, each Intel processor reads in the same x86
instructions, but each processor handles instructions differently

• Java programs are converted into portable bytecode that is converted
into machine instructions during execution (just-in-time compilation)

• What are important design principles when defining the instruction
set architecture (ISA)?

4

Instruction Set

• Important design principles when defining the
instruction set architecture (ISA):

� keep the hardware simple – the chip must only
implement basic primitives and run fast

� keep the instructions regular – simplifies the
decoding/scheduling of instructions

5

A Basic MIPS Instruction

C code: a = b + c ;

Assembly code: (human-friendly machine instructions)
add a, b, c # a is the sum of b and c

Machine code: (hardware-friendly machine instructions)
00000010001100100100000000100000

Translate the following C code into assembly code:
a = b + c + d + e;

6

Example

C code a = b + c + d + e;
translates into the following assembly code:

add a, b, c add a, b, c
add a, a, d or add f, d, e
add a, a, e add a, a, f

• Instructions are simple: fixed number of operands (unlike C)
• A single line of C code is converted into multiple lines of

assembly code
• Some sequences are better than others… the second

sequence needs one more (temporary) variable f

7

Subtract Example

C code f = (g + h) – (i + j);

Assembly code translation with only add and sub instructions:

8

Subtract Example

C code f = (g + h) – (i + j);
translates into the following assembly code:

add t0, g, h add f, g, h
add t1, i, j or sub f, f, i
sub f, t0, t1 sub f, f, j

• Each version may produce a different result because
floating-point operations are not necessarily
associative and commutative… more on this later

9

Operands

• In C, each “variable” is a location in memory

• In hardware, each memory access is expensive – if
variable a is accessed repeatedly, it helps to bring the
variable into an on-chip scratchpad and operate on the
scratchpad (registers)

• To simplify the instructions, we require that each
instruction (add, sub) only operate on registers

• Note: the number of operands (variables) in a C program is
very large; the number of operands in assembly is fixed…
there can be only so many scratchpad registers

10

Registers

• The MIPS ISA has 32 registers (x86 has 8 registers) –
Why not more? Why not less?

• Each register is 32-bit wide (modern 64-bit architectures
have 64-bit wide registers)

• A 32-bit entity (4 bytes) is referred to as a word

• To make the code more readable, registers are
partitioned as $s0-$s7 (C/Java variables), $t0-$t9
(temporary variables)…

11

Memory Operands

• Values must be fetched from memory before (add and sub)
instructions can operate on them

Load word
lw $t0, memory-address

Store word
sw $t0, memory-address

How is memory-address determined?

Register Memory

Register Memory

12

Memory Address

• The compiler organizes data in memory… it knows the
location of every variable (saved in a table)… it can fill
in the appropriate mem-address for load-store instructions

int a, b, c, d[10]

Memory

…

Base address

13

Immediate Operands

• An instruction may require a constant as input

• An immediate instruction uses a constant number as one
of the inputs (instead of a register operand)

addi $s0, $zero, 1000 # the program has base address
1000 and this is saved in $s0
$zero is a register that always
equals zero

addi $s1, $s0, 0 # this is the address of variable a
addi $s2, $s0, 4 # this is the address of variable b
addi $s3, $s0, 8 # this is the address of variable c
addi $s4, $s0, 12 # this is the address of variable d[0]

14

Memory Instruction Format

• The format of a load instruction:

destination register
source address

lw $t0, 8($t3)

any register
a constant that is added to the register in brackets

15

Example

Convert to assembly:

C code: d[3] = d[2] + a;

16

Example

Convert to assembly:

C code: d[3] = d[2] + a;

Assembly: # addi instructions as before
lw $t0, 8($s4) # d[2] is brought into $t0
lw $t1, 0($s1) # a is brought into $t1
add $t0, $t0, $t1 # the sum is in $t0
sw $t0, 12($s4) # $t0 is stored into d[3]

Assembly version of the code continues to expand!

17

Recap – Numeric Representations

• Decimal 3510

• Binary 001000112

• Hexadecimal (compact representation)
0x 23 or 23hex

0-15 (decimal) � 0-9, a-f (hex)

18

Instruction Formats

Instructions are represented as 32-bit numbers (one word),
broken into 6 fields

R-type instruction add $t0, $s1, $s2
000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op rs rt rd shamt funct
opcode source source dest shift amt function

I-type instruction lw $t0, 32($s3)
6 bits 5 bits 5 bits 16 bits

opcode rs rt constant

19

Logical Operations

Logical ops C operators Java operators MIPS instr

Shift Left << << sll
Shift Right >> >>> srl
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit NOT ~ ~ nor

20

Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2: beq register1, register2, L1
Similarly, bne and slt (set-on-less-than)

• Unconditional branch:
j L1
jr $s0

Convert to assembly:
if (i == j)

f = g+h;
else

f = g-h;

21

Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2: beq register1, register2, L1
Similarly, bne and slt (set-on-less-than)

• Unconditional branch:
j L1
jr $s0

Convert to assembly:
if (i == j) bne $s3, $s4, Else

f = g+h; add $s0, $s1, $s2
else j Exit

f = g-h; Else: sub $s0, $s1, $s2
Exit:

22

Example

Convert to assembly:

while (save[i] == k)
i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

23

Example

Convert to assembly:

while (save[i] == k)
i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit:

24

Title

• Bullet

