2103.02515v2 [cs.DS] 8 Mar 2021

arXiv

Ribbon filter: practically smaller than Bloom and Xor!

Peter C. Dillinger
Facebook, Inc.
Seattle, Washington, USA
peterd@fb.com

ABSTRACT

Filter data structures over-approximate a set of hashable keys, i.e. set
membership queries may incorrectly come out positive. A filter with
false positive rate f € (0,1] is known to require > log,(1/f) bits
per key. At least for larger f > 274, existing practical filters require
a space overhead of at least 20% with respect to this information-
theoretic bound.

We introduce the Ribbon filter: a new filter for static sets with
a broad range of configurable space overheads and false positive
rates with competitive speed over that range, especially for larger
f = 277. In many cases, Ribbon is faster than existing filters for
the same space overhead, or can achieve space overhead below 10%
with some additional CPU time. An experimental Ribbon design
with load balancing can even achieve space overheads below 1%.

A Ribbon filter resembles an Xor filter modified to maximize
locality and is constructed by solving a band-like linear system
over Boolean variables. In previous work, Dietzfelbinger and Walzer
describe this linear system and an efficient Gaussian solver. We
present and analyze a faster, more adaptable solving process we call
“Rapid Incremental Boolean Banding ON the fly,” which resembles
hash table construction. We also present and analyze an attractive
Ribbon variant based on making the linear system homogeneous,
and describe several more practical enhancements.

1 INTRODUCTION

Background and motivation. The primary motivation for this
work is optimizing data retrieval, especially in systems aggregating
immutable data resources. In the example of LSM-tree storage [50],
persisted key-value data is primarily split among immutable data
files. A crucial strategy for reducing I/O in key look-ups is filtering
accesses using an in-memory data structure. In a common configu-
ration, each data file has an associated Bloom filter [9] representing
the set of keys with associated data in that file. The Bloom filter has
some false positive (FP) rate, which is the probability that querying
a key not added returns TRUE (positive). For example, configuring
the Bloom filter to use 10 bits of space per added key yields an FP
rate of just under 1%, regardless of the size or structure of the keys
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themselves?. Thus, the Bloom filter filters out almost all specific
key queries® to data files that would find no relevant data. False
negative (FN) queries would be incorrect for this application and
must never occur.

Blocked Bloom filters [44, 54] are a popular Bloom variant be-
cause they are extremely fast. We do not expect to improve upon
this solution* for short-lived applications such as database joins
or the smallest levels of an LSM-tree. However, Bloom filters use
at least 44% more space (“space overhead”) than the information-
theoretic lower bound of 1 = log,(1/f) bits per key for a hashed
filter with FP rate f [13, Section 2.2]. Blocked Bloom can exceed
50% space overhead for small f.

In this work we focus on saving space in static filters, and opti-
mizing the CPU time required for saving space. Our presentation
and validation are kept general, but an intended application is opti-
mizing accesses to the largest levels of an LSM-tree, where it should
be worth CPU time to save space in long-lived memory-resident
structures®. In [18] it is shown that a relatively high FP rate for
these levels is best for overall efficiency. However, the space sav-
ings offered by existing practical Bloom filter alternatives is limited
(dotted line in Figure 1 (a)), especially for higher FP rates, A < 5.

Bloom filter and alternatives. We can categorize hashed filters
by the logical structure of a query:

OR probing: Cuckoo filters [11, 32, 34, 35], Quotient filters [5,
15, 30, 51], and most others return TRUE for a query if any
one of several probed locations is a hashed data match, much
like hash table look-ups. This design is great for supporting
dynamic add and delete, but all known instances use (1 +
£)A + 1 bits per key where 1 > 1.44, or often 1 = 3 for speed®.
Even with ¢ ~ 0.05, the space overhead is large for small A.

AND probing: A Bloom filter query returns TRUE iff all probed
locations (bits) are a match (set to 1).

Learned filters [55] or tries [59] can take advantage of regularities in the key set. A
space-efficient hash table [15] can take advantage of a densely covered key space. We
focus on the general case.

3Static filters can also support range queries, either through prefix Bloom [48] or more
sophisticated schemes [47].

“In Section 7 we mention and use another blocked Bloom implementation with new
trade-offs [24].

5In some large-scale applications using RocksDB [31] for LSM-tree storage, we observe
roughly 10% of memory and roughly 1% of CPU used in blocked Bloom filters. The
size-weighted average age of a live filter is about three days. An experimental Ribbon
filter option was added to RocksDB in version 6.15.0 (November 2020).

4 > 1.44 can be explained by these structures approximating a minimal perfect
hash [36], a near-strict ordering of keys based on the location of their matching entry
in the structure, on top of A payload bits per key. This is an observation about existing
structures, not necessarily a fundamental limitation.
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XOR probing: Xor filters [10, 14, 20, 37, 39] return TRUE for a
query iff the bitwise exclusive-or (XOR) of all probed loca-
tions is a hashed data match. XOR probing is only known to
work with static filters.

Structures using XOR probing are the most promising for space
efficient static filters. They are constructed by solving a linear sys-
tem with one constraint per key ensuring that querying the key
returns TRUE. Standard Xor filters use a fast solving process called
peeling that limits their space efficiency to > 1.221 bits per key’,
though a variant with fast compression, the Xor+ filter [39], uses
roughly 1.081+ 0.5 bits per key, which is an improvement for larger
A. Using structured Gaussian elimination instead of peeling [21, 37]
offers better space efficiency, but construction times are considered
impractical for many applications.

Core contribution. We introduce a faster, simplified, and more
adaptable Gaussian elimination algorithm (Ribbon) for the static
function data structure from [22]. Based on Ribbon, we develop a
family of practical and highly space-efficient XOR-probed filters.

Results and comparison. Figure 1 (a) summarizes extensive bench-
marking data by indicating which structure is fastest for satisfying
various space and FP rate requirements for a static filter. For “fastest”
we consider the sum of the construction time per key and three
query times (measured for x € S, x ¢ S and a mixed data set).’

Although we compare Ribbon with many approaches imple-
mented in the fastfilter benchmark library [38], only variants of
Bloom, Cuckoo, Xor, and Ribbon emerge as winners. Specifically,
the color at point (x, y) indicates the fastest filter with space over-
head at most x and FP rate f € [y/2,y-2] for n = 107 keys. Diagonal
shading indicates different winners for n = 10° and n = 108. The
timings for the winning approach are also shown in Figure 1 (b).
We observe the following.

e Ribbon wins to the right of the dotted line because none of
the competing approaches achieve space overhead this low.

e Ribbon wins in some territory previously occupied by Xor
and Xor+ filters, mostly for f > 278 (1 < 8) from Xor and
f > 2712 (1 < 12) for Xor+. In these cases, Ribbon-style
Gaussian elimination is faster than peeling.

o Blocked Bloom filters are still the fastest whenever appli-
cable, though Cuckoo and Xor take some of the remaining
>44% territory (and nearby) for small FP rates.

Outline. The paper is structured as follows.

Section 2. We briefly review data structures for static func-
tions and how they give rise to filters.

Section 3. We describe and analyze the new Ribbon construc-
tion algorithm, which preserves asymptotic guarantees from
[22]. We also show how to improve the space efficiency of

7 A new spatially-coupled construction for Xor filters [57] promises lower space over-
heads and in some cases slightly improved construction time with peeling. Simulations
indicate a number of keys on the order of 10° or more is needed for most of the benefit,
limiting the known generality of the approach. Configuration in practice is not well
understood.

8The “right” weighing of construction and query time clearly depends on the use case.
Because LSM-trees are especially useful for write-heavy workloads requiring good
read latency, we find this a reasonable ratio for at least that use case. If a 4KB filter
memory page has a lifetime as long as two weeks and at least one negative (useful)
query per added key (n roughly 2'2) is seen, that satisfies the current rule of five
minutes for caching SSD storage in RAM [2].
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Figure 1: (a) Fastest filter with the given combination of
space overhead and false positive rate, considering a mix of
construction and query times. (b) Construction and query
times for fastest approaches in (a).

small Ribbon structures (“smash”). These features go into the
Standard Ribbon filter, which in practice has increasing space
overhead or running time as the number of keys increases.’

Section 4. We present the Homogeneous Ribbon filter, which
shares many desirable properties with blocked Bloom filters:
construction success is guaranteed, and scaling to any num-
ber of keys is efficient. Homogeneous Ribbon does not build
on static functions in the standard way, which simplifies
implementation but complicates analysis.

Section 5. We describe some practical enhancements and is-
sues for Ribbon filters, including (1) efficiently utilizing any
amount of memory for any number of keys, (2) laying out
data for efficient queries, (3) efficiently satisfying hashing
requirements, and (4) scaling Standard Ribbon with data
sharding.

Section 6. We present Balanced Ribbon, an experimental ex-
tension of Standard Ribbon that uses a greedy load balancing
scheme within a contiguous ribbon. This scales the extreme
space efficiency of small Standard Ribbon filters to very large
n, such as only 1.0051 + 0.008 bits per key with practical con-
struction and query times.

Section 7. We present more experimental validation.

%If the processor word size is assumed to be Q (log n), query time and space overhead
can be kept constant. We make no such assumption here.
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2 FROM STATIC FUNCTIONS TO FILTERS

Approximate membership queries and filters. An approximate
membership query filter — filter for short — represents a set S € U
from some universe U. A membership query with x € S must
return TRUE, while a query with x € U \ S may return TRUE with
probability at most f where f > 0 is the false positive (FP) rate.
Static functions. A static function is a data structure (sometimes
called “retrieval data structure”) representing a function b : § —
{0,1}" for some set S C U of keys. A query for x € S must return
b(x) but a query for x € U \ S may return any value from {0, 1}".
Membership queries (“is x € $?”) are not supported.

Static Functions from Linear Systems. A well-known way for
constructing static functions [3, 10, 14, 20, 37, 53] uses a hash func-
tion to associate each key x € U with a set h(x) C [m] for
some m > n = |S|. By h(x) € {0,1}™ we denote the character-
istic (row) vector of h(x). If (h(x))xes are linearly independent
in the vector space {0,1} over the two-element field then the
system (h(x) Z = b(x))xes of linear equations has a solution
Z € {0,1}™*" The static function is then given by h and Z. Most
memory is used for the mr bits of Z, which takes Zr bits per key.

A query for x € U returns
P z (1)

ich(x)

query(x) := E(x) - Z=

where Z; denotes the i-th row of Z. Since queries involve |h(x)| - r
bits from Z fast query times require sparse h(x).

Several constructions choose h such that h(x) contains exactly
three 1-bits in random positions [10, 37]. In this case % must not
exceed the corresponding XORSAT threshold [19, 52] ¢5 ~ 0.92. If
a greedy algorithm is used for solvmg the linear system then =
must not exceed the peeling threshold c3 ~ 0.82.

The space usage is roughly (1+¢)r bits per key when m = (1+¢)n.
The first paper to achieve ¢ = 0(1) is [53]. Even ¢ = O(logn/n) is
possible, albeit with mediocre construction time [21]. A recent more
practical contribution that (more humbly) aims for small constant
& > 0 [22] will be the starting point of our own construction.

Xor filters. There is a straightforward way to obtain a filter with
FP rate 27" from an r-bit static function as pointed out in [20,
Observation 1]. Simply pick a random fingerprint function b : U —
{0,1}" (a hash function) and store its restriction bg : S — {0,1}" as
a static function. Then for any x € § the static function reproduces
bs(x) = b(x) while for x € U \ S the returned value will match
b(x) only with probability 27" (because b(x) is random and plays
no role in the construction of the static function).

Such filters inherit the performance of the underlying static
function, giving them the potential to be “Faster and Smaller Than
Bloom and Cuckoo Filters” as claimed in [39], when dynamic inser-
tions and deletions are not required. A standard construction with
h(x) being a fully random set of size 3 is appropriately named Xor
filter [39].

3 RIBBON RETRIEVAL AND RIBBON FILTERS

By enriching the scauss static function!® from [22], we obtain the
Ribbon static function which can be used as a Ribbon filter. Since

10Strictly speaking, sGauss is the name of the construction algorithm of the otherwise
unnamed data structure.

m=(1+¢€)n

Figure 2: Typical shape of the random matrix with rows
(71 (x))xes sorted by starting positions. The shaded “ribbon”
region contains random bits. Gaussian elimination never
causes any fill-in outside of the ribbon.

Ribbon filters also retrieve fingerprints using Equation (1)—just
with a different choice of h—they can be seen as (non-standard) Xor
filters.

The scauss construction. For a parameter w € N that we call
the ribbon width, the vector h(x) € {0,1}™ is given by a random
starting position s(x) € [m — w — 1] and a random coefficient vector
c(x) € {0,1}" as h(x) = 05" 1¢(x)0™ 5~ W Note that even though
m-bit vectors like h(x) are used to simplify mathematical discussion,
such vectors can be represented using log(m) + w bits.

The matrix with rows (h(x))yes sorted by s(x) has all of its
1-entries in a “ribbon” of width w that randomly passes through
the matrix from the top left to the bottom right, as in Figure 2. The
authors of [22] showed that a solution Z € {0, 1} to (h(x) -Z =
b(x))xes can be computed quickly:

THEOREM 3.1 ([22, THM 2]). For any constant0 < ¢ < ;,w = IOgn

and & = 1 — ¢, with high probability the linear system (h(x) - Z =
b(x))xes is solvable for anyr € N and anyb : S — {0, 1}". Moreover,
after sorting (h(x))xes by s(x), Gaussian elimination can compute
a solution Z in expected time O (n/e?).

Boolean banding on the fly. For Ribbon we start with the same
hash function A as in sGauss. For slightly improved presentation,
execution speed, and chance of construction success, we force coef-
ficient vectors c(x) to start with 1.1

The main difference lies in how we solve the linear system. The
insertion phase maintains a reduced system M of linear equations
using on-the-fly Gaussian elimination [8]. This system is of the form
shown in Figure 3 and has m rows. Each row i is represented by a
w-bit vector ¢; € {0,1}" and b; € {0, 1}". Logically, the i-th row is
either empty (c; = 0%) or specifies a linear equation ¢;* Z[; j1y) = bi
where c; starts with a 1. With Z[; ;,.,) € {0, 1}*" we refer to rows
i,...,i+w—10fZ We ensure ¢; - Z[; j;,) is well-defined even
when i + w — 1 > m with the invariant that c; values never select
“out of bounds” rows of Z. .

We consider the equations (h(x) - Z = b(x))xes one by one, in
arbitrary order, and try to integrate each into M using Algorithm 1,
which we explain now. A key’s equation may be modified several

!1n asymptotic considerations this change is inconsequential (and mildly annoying).
For better alignment with [22] our theorems still assume that c(x) is uniformly
distributed in {0, 1}™.
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Figure 3: Shape of the linear system M central to Boolean
banding on the fly.

times before it can be added to M, but a loop invariant is that its
form is

¢ Zjjjpw) =bforie[m],ce10{0, 1} bef{0,1}. (2

The initial equation H(x) -Z = b(x) of key x € S has this form with
i =s(x),c=c(x)and b = b(x). We proceed it as follows.
Case 1: In the simplest case, row i of M is empty and we can
incorporate Equation (2) as the new i-th row of M.
Case 2: Otherwise row i of M is already occupied by an equa-
tion ¢; + Z[; j4+y) = bi. We compute the summed equation

¢ Zlijitw) = b’ withc" =c@cjand b" = b @ b;, (3)

which, in the presence of row i of M, puts the same constraint

on Z as Equation (2). Both ¢ and ¢; start with 1, so ¢’ starts

with 0. We consider the following sub-cases.

Case 2.1: ¢’ = 0" and b’ = 0". The equation is void and can
be ignored. This case is reached when the key’s original
equation is implied by equations previously added to M.

Case 2.2: ¢/’ = 0" and b’ # 0". The equation is unsatisfiable.
This case is reached when the key’s original equation is
inconsistent with equations previously added to M.

Case 2.3: ¢’ starts with j > 0 zeroes followed by a 1. Then

Equation (3) can be rewritten as ¢”’ - Z| j74y) = b” where
i’ =i+ jand ¢” is obtained from ¢’ by discarding the j
leading zeroes of ¢ and appending j trailing zeroes.
Note that in the bit-shift of Algorithm 1 the roles of “lead-
ing” and “trailing” may seem reversed because the least-
significant “first” bit of a word is conventionally thought
of as the “right-most” bit.

Termination is guaranteed since i increases with each loop iteration.

Once equations for all keys are successfully inserted, we obtain
a solution Z to M in the back substitution phase. The rows of Z are
obtained from bottom to top. If row i of M contains an equation
then this equation uniquely determines row i of Z in terms of later
rows of Z. If row i of M is empty, then row i of Z can be initialized
arbitrarily.

“On-the-fly” and “incremental’” The insertion phase of ribbon
is on-the-fly in the sense that for a sequence S = (x1, X2, x3,...) of
keys we can easily determine the longest prefix (xi,...,x,) of S
for which construction succeeds: Simply insert keys until the first
failure. The insertion phase is incremental because we can easily
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Algorithm 1: Adding a key’s equation to the linear system M.

10« s(x)

¢« c(x)

3 b« b(x)

4 loop

5 if M.c[i] =0then// row i of M is empty
6 M.c[i] « ¢

7 M.b[i] « b

8 return SUccCEss (inserted)

)

9 c—c®M.cli]

10 b—be M.b[i]

11 if ¢ = 0 then

12 L if b = 0 then return success (redundant)

13 else return FAILURE (inconsistent)

14 Jj « findFirstSet(c) // a.k.a. BitScanForward
15 ie—i+]j

16 c«c>>j// logical shift last toward first

undo a set of most recent successful insertions: Simply remove the
rows from M that were added. These properties are not shared by
sGauss and will be exploited in Section 6.

Analysis. All performance guarantees for the construction algo-
rithm carry over from sGauss as follows.

THEOREM 3.2. Let S € U be an arbitrary key set.

(i) If an sGcauss construction succeeds for S then so does the Ribbon
construction.

(ii) If both constructions succeed on S, expected running times coin-
cide up to constant factors.

Proor.

(i) This is unsurprising as both approaches attempt to solve the
same linear system.!? A superficial difference concerns redun-
dant equations. In Algorithm 1 it is natural to ignore them.
SGAUSS treats them as failures, to avoid special cases during
back-substitution.

(if) Consider a set S on which sGauUss succeeds, i.e. S gives rise
to a solvable system without redundant equations. The back-
substitution phases are identical in both algorithms. The anal-
ysis of the Ribbon insertion phase hinges on counting row
additions. Each key x € S has a starting position s(x) and
causes some row i(x) of M to be filled. The number of row
additions for the insertion is clearly at most the displacement
i(x) — s(x) of x. Summing over all keys yields

D= Zi(x)—s(x):Zi—Zs(x)
xX€S ieP x€S
where P = {i(x) | x € S} is the set of row-indices of M that
end up being occupied. A crucial observation is that even
though the values i(x) depend on the insertion order of the
keys, the set P does not. Indeed, for any j € [m] the value
[PN{1,...j}|is the rank of the sub-matrix of M formed by its
first j columns, which is invariant under row operations. So

128ee Footnote 11.
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no matter in what order the keys of S are inserted, we always
observe the same sets P N {1, ... j} and hence the same set P
and the same value D. The number of row additions of sGauss
is bounded by D by a similar argument (see [22, Lemma 3]).
The analysis in [22] proceeds by bounding D in expectation
and hence carries over to our case. ]

Efficiency. While scauss and Ribbon are tied in O-notation, Ribbon
improves upon sGAUSs in constant factors for the following reasons:

e There is no need to pre-sort the keys by s(x).

® SGAUSs requires explicitly storing a pivot position for each
row. This is because scauss does not compute an echelon
form but only ensures that in each row the left-most 1-entry
— the pivot — is the bottom-most 1-entry of its column.
sGAuss performs roughly D elimination steps that, depend-
ing on some bit, turn out to be xor-operations or no-ops.
Ribbon on the other hand performs roughly D/2 bit shifts
and D/2 (unconditional) xor operations. Though the details
are complicated, intuition on branching complexity seems
to favour ribbon.

3.1 Ribbon with Smash

When aiming for high space efficiency, there is an issue with early
and late columns of the linear system. We shall describe the problem
and its solution in an extreme but simple case where perfect space
efficiency, i.e. m = n is desired.

In the absence of redundant equations, the construction of the
linear system succeeds only if all slots of M can be filled. For the
first i slots to be filled, it is necessary that |[{x € S | s(x) < i}| > i.
Figure 4 (a) illustrates that random fluctuations make this unlikely.

There is a similar problem relating to the last i columns!3.

(@) (b)

Figure 4: (a) Consider the diagonal (dashed) in a square Rib-
bon system. Its beginning and end may lie outside of the of
the (shaded) ribbon area.

(b) Our “smash” variant solves this problem.

We can address this issue by artificially inflating the probabilities
Pr[s(x) = 1] and Pr[s(x) = m —w + 1] of the first and last starting
position by a factor of £ we call the smash value. Such a distribution
for s is easy to implement using a uniform distribution on [—¢ +
2,m —w + ¢] and “clamping” the sampled value to [1,m — w + 1]
using min and max functions. Micro-benchmarks show roughly
3ns overhead per query for smash, on an Intel Skylake CPU.

13To see the symmetry, we could have argued about the rank of the first i columns of
M which is at most [{x € S | s(x) < i}|.

For a smash value of £ = w/2 and a ribbon width of w = w(+/n)
the matrix diagonal is firmly within the ribbon, see Figure 4 (b). It
is not hard to prove that such a matrix is asymptotically as likely
to be regular as a fully random n X n matrix. That probability is
cp ~ 0.289; see [16].

In Section 5.4 we present empirical findings showing that non-
zero smash values also benefit success probabilities in practically

more relevant cases with ¢ > 0 and w = O( lof .

4 HOMOGENEOUS RIBBON FILTERS

Recall that the idea underlying Ribbon filters is to pick hash func-
tions b : U — {0,1}™, b : U — {0,1}" and find Z € {0, 1}
such that all x € S satisfy h(x) - Z = b(x), while most x € U \ S
will not.

We now examine what happens when we get rid of the fin-
gerprint function b effectively setting b(x) = 0 forall x € U. A
filter is then given by a solution Z to the homogeneous system
(h(x) - Z = 0")xes- The FP rate for Z is fz = Prg.gla-Z = 0"]
where H is the distribution of h(x) for x € Y. An immediate is-
sue with the idea is that Z = 0™ is a solution giving f7 = 1.
A solution Z chosen uniformly at random from all solutions fares
better, however. To obtain one, all free variables, i.e. the variables
corresponding to empty rows of M, are initialized randomly during
back substitution.'* The overall FP rate is then f = E[fz] where Z
depends on the randomness in (h(x))yes and the free variables.

We call the resulting construction Homogeneous Ribbon filter. It
has two obvious advantages over Standard Ribbon filters:

e Constructions can never fail, regardless of n, ¢ and w. This
is simply because a homogeneous linear system always has
at least the trivial solution.

o The absence of fingerprints slightly improves time and space
in construction. (In optimized implementations, query times
are essentially the same.)

A complication is that the FP rate f can be higher than 27". Intu-
itively, if too many equations constrain some part of Z then that
part will be insufficiently random. For ew > Cr (for some constant
C > 0) and large n, this effect is negligible as we shall argue in
Theorem 4.1. This still leaves us with two disadvantages, especially
for small n and high r:

e The product ew must be proportional to r (for acceptable f)
whereas for Standard Ribbon ew need only be proportional
to log n (for acceptable success probability). We should there-
fore not expect an improvement over Standard Ribbon for
r = Q(logn).

e For small n, the variance of f7 is quite high, meaning small fil-
ters will occasionally have significantly more false positives
(e.g. due to random skew in (s(x))xes) with no obvious way
to detect this during construction. This could be dangerous
for some applications.

4.1 Analysis

We can make a strong case for Homogeneous Ribbon filters by
showing that arbitrarily small space overhead at arbitrarily large

4QOur implementation uses trivial pseudo-random assignments: a free variable in row
i is assigned pi mod 2" for some fixed large odd number p.



size n is achievable. This neither requires the ribbon width w to
scale with n, nor a deviation from the pure construction (e.g. by
partitioning the key set into small shards).

By space overhead we mean $¥4%E — 1 where sPACE is the space
usage of the filter in bits per key and opT = —log,(f) is the
information-theoretic lower bound for filters that achieve the same
FP rate.

THEOREM 4.1. There exists C € R* such that for any ¢ < 1/2,
any desired FP rate ¢ > 0 and r the closest integer to —log,(¢) the
following holds. For any w € N with ew > Cmax(logw,r) and
n € N the Homogeneous Ribbon filter with n keys and parameters
&w,r has f € [¢/2,2¢] and space overhead at most 2¢.

Our argument starts with the following simple observation.

LEMMA 4.2. In the context of a Homogeneous Ribbon filters let p
be the probability that fory € U \ S the vector h(y) is in the span of
(h(x))xes Then we have

f=p+-p2.

Proor. First assume there exists S’ C S with l_‘;(y) =

which happens with probability p. In that case

hy)-Z=( h(x)-Z= ) (h(x)-2) =0

xeS’ xeSs’

Ses h(x)

and y is a false positive. Otherwise, i.e. with probability 1 - p, an
attempt to add h(y) - Z = 0 to M after all equations for S were added
would have resulted in a (non-redundant) insertion in some row
i. During back substitution, only one choice for the i-th row of Z
satisfies h(y) Z = 0. Since the i-th row was initialized randomly
we have Pr[h(y) Z=0] h(y) ¢ span((h(x))xes)] =27, O

We shall now derive an asymptotic bound on p in terms of large
w and small ¢ (recall ¢ = ™21). Tt is too imprecise to estimate p
and f in practical settings, which we do empirically in Section 4.2.
The main takeaway is rather that p does not depend on n. We may
therefore expect Homogeneous Ribbon filters to scale to arbitrary

sizes n with no increase in f even when w and ¢ are constants.

LEMMA 4.3. There exists a constant C such that for any w € N
and Clo% <e< % we have p = exp(—Q(ew)).

The main ingredient in the proof is that exp(—Q(ew)) bounds
the number of keys that cannot be (non-redundantly) inserted,
which follows from [22].1°

ProoOF SKETCH. We may imagine that S € U andy € U\ S
are obtained from a set St C U of size n + 1 by picking y € S* at
random and setting S = S* \ {y}. Then p is simply the expected
fraction of keys in S* that are contained in some dependent set, i.e.
in some S’ C S* with Y, cs h(x) = 0. Clearly, x is contained in a
dependent set if and only if it is contained in a minimal dependent
set. Such a set S” always touches a consecutive set of positions, i.e.
pos(8’) = Uyxes [s(x), s(x) + w — 1] is an interval.

We call an interval I C [m] long if |I| > w? and short otherwise.
We call it overloaded if S; := {x € S* | s(x) € I} has size |S7| >
[I] - (1 — ¢/2). Finally, we call a position i € [m] bad if one of the
following is the case:

15Recall Footnote 11.
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(B1) iis contained in a long overloaded interval.

(B2) i € pos(S’) for a minimal dependent set S” with long non-
overloaded interval pos(S’).

(B3) i € pos(S’) for a minimal dependent set S” with short interval
pos(S’).

We shall now establish the following

Claim: Vi € [m] : Pr[i is bad] = exp(—Q(ew)).

For each i € [m] the contributions from each of the badness con-
ditions (B1,B2,B3) can be bounded separately. In all cases we use
our assumption ¢ > C 16w 1t ensures that exp(—Q(ew)) is at
most exp(—Q(logw)) = w2 and can “absorb” factors of w
in the sense that by adapting the constant hidden in Q we have
wexp(—Q(ew)) = exp(—Q(ew)).

(81) A Chernoff bound for sums X = }’; Xj of i.i.d. indicator ran-

dom variables with y = E[X] is

Pr[X > (1+8)u] < exp(=6%u/3). (4)

We use it in a case where I is an interval and Xj, ..., X;41
indicate which of the keys in S* have a starting position within
I. For n > w we have

(n+1)|I] n|I|
=ElX| < ———— ~ —
H [ ]_m—w+1

=11/(1+e).
Skipping over some uninteresting detalls, the probability for I
to be overloaded is (for n > w)

Pr[X > (1-¢/2)|I]] <Pr[X > (1+¢/6)|I|/(1+¢)]

Eq. 4 —e2|1| e

< exp(m)v ° =# 5

The probability for i € [m] to be contained in a long over-
loaded interval is bounded by the sum of Equation (5) over all
lengths |I| > w? and all |I| offsets that I can have relative to i.
The result is of order exp(—Q(e2w?) and hence small enough.

(82) Consider a long interval I that is not overloaded, i.e. |I| > w?
and |S;| < (1 — ¢/2)|I|. There are at most 21571 sets S’ of keys
with pos(S’) = I and each is a dependent set with probability
27| because each of the |I| positions of I that S’ touches
imposes one parity condition.

The probability for I to support at least one dependent set is
therefore at most 2~ 1| - 2151 = 2= 5111 = exp(—Q(e|1])).
Similar as in (B1) for i € [m] we can sum this probability over
all admissible lengths |I| > w? and all offsets that i can have
in I to bound the probability that i is bad due to (B2).

(B3) Let S;eq C S be the set of redundant keys, i.e. keys for which
Algorithm 1 returns “success (redundant)”. While S,oq de-
pends on the insertion order, the rank defect |Speq| = n —
rank((h(x))xgs) does not. A central step in [22] implies that

E[|Sredl] = m - exp(=Q(ew))."®

Now if i is bad due to (B3) then i € pos(S’) for some minimal

dependent set S” with short pos(S”). At least one key from

S’ is redundant (even if all keys from pos(S’) are inserted

first). In particular, i is within short distance (< w?) of the

starting position of a redundant key x. Therefore at most |Syeql-

logn

16The bound is only used to show that for w = Q( ——) all insertions succeed with

high probability.
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Figure 5: Combinations of space overhead and false positive
rate achievable with various ribbon widths w and large n.
(Experimental data for Ribbon configurations use n = 10°
but generalize.)

2w? positions are bad due to (83), which is an exp(-Q(ew))-
fraction of all positions as desired.
With a concentration argument the following variant of the claim
can be proved. We omit the details.

Claim’: Vx € S* : Pr[s(x) is bad] = exp(—Q(ew)).

Now assume that a key x € S* is contained in a minimal dependent
set §7. It follows that all of pos(S’) is bad. Indeed, either pos(S’) is a
short interval (— B3) or it is long. If it is long, then it is overloaded
(— B1) or not overloaded (— B2). In any case s(x) € pos(S’) is bad.

Therefore, the probability p for y € ST to be contained in a
dependent set is at most the probability for s(y) to be bad. This is
upper-bounded by exp(—Q(ew)) using Claim’. O

We are now ready to prove Theorem 4.1.

Proor oF THEOREM 4.1. We shall find that our filter has f <
277(1+ £%) and hence f € [¢/2, 2¢] with high probability.

The space consumption of Z € {0, 1} is sPACE = B =r(1+e)
bits per key. To relate this to opT, we need bounds on p.

By assumption ew > Clogw, so a large enough choice for C
permits the use of Lemma 4.3, which guarantees p = exp(—Q(ew)).
Again using ew > C max(log w, r) for large enough C gives

1
p <exp(—2log(w) —r) < We_r <2, (6)

Together with Lemma 4.2 we get

Lem 4.2

orT = —log,(f) ~ =" —log,(p+(1-p)27")

Eq. 6 2
> —log,(p+27") = —logy(277(1+¢%))
=r—log,(1 +6%) > r -2
Putting everything together yields

SPACE  r(1+¢) (1+e¢)
= < <1+ 2e.
OPT r— 2 (1-¢2)

The last step makes use of ¢ < % O

4.2 Space efficiency in practice

To minimize the space overhead r(1 + ¢)/log f~! — 1 for chosen
values of r and w in a Homogeneous Ribbon filter, ¢ must be neither
too large or too small. (Small ¢ causes f to explode due to densely-
packed constraints.) To choose ¢, we turn to simulations on random
data, building large structures and testing the FP rate. Using m =
3.107 (among others), w € {16,32,64,128}, and r € [1, 16], we see
a pretty clear pattern in where the space overhead is minimized for
any large n:
.~ 4+r/ 4_ @
w

Note how the recommendation ¢ > C max(log w, r)/w one might
derive from Theorem 4.1 (vaguely) agrees. We use (7) in all ex-
periments. In Figure 5 we show combinations of space overhead
and FP rate to expect from Homogeneous Ribbon filters for w €
{16, 32, 64,128} and large n.17 Balanced Ribbon filters, also in Fig-
ure 5, are discussed in Section 6.

For example, consider using r = 7 for roughly 1% FP rate and
w = 64 for reasonable space-vs.-time trade-off. Using ¢ ~ 0.09 from
Equation (7) we observe f ~ 0.81% > 0.78% ~ 27/, so actual space
overhead is closer to 10% than the 9% allocated with .

5 MAKING RIBBON PRACTICAL
5.1 Configurability and elasticity

A useful and perhaps previously unreplicated feature of Bloom
filters is the ability to efficiently utilize any amount of space for
minimizing the FP rate in representing any number of keys. We
call this configurability and suggest it is practically important for
space efficiency. Consider an application with little control over
the number of keys going into a filter. Even if we use a perfectly
space efficient filter for a specific FP rate, we could be wasting
significant space due to internal fragmentation from an allocator.
A memory allocator like jemalloc [33] averages about 10% internal
fragmentation on arbitrarily sized allocations, space that should
ideally be used by the filter to reduce its FP rate 8.

More specifically, Bloom alternatives such as Cuckoo, Quotient,
and Xor conventionally use cells of some whole number of bits, as
Ribbon does with r. Whole number r limits space-efficient choices
of FP rates and bits per key. For example, using only 5-bit cells
when 5.5 bits per cell is available adds roughly 10% space overhead
to our filter. Other than Ribbon, which is tied to the two-element
field, these same Bloom alternatives can use fractional-bit cell sizes.
Some configurations can even be made efficient, such as 64/i bits per
cell for whole i (an existing Xor10.666 implementation is tested in
Section 7), but fine granularity would surely be more CPU intensive.

An alternative way of generalizing to effectively fractional r is to
split available space between two structures: one using [r] solution
columns (or bits per cell) and the other using | r| for a weighted
average of r, chosen to fit available space. This only slightly in-
creases the overall space overhead. For example, using r = 5.5
yields (non-homogeneous) FP rate of 3/128. The lower bound for
this rate is A = 5.415 bits per key, so the approach adds 1.57% to

17Standard Ribbon filters are not shown because the achievable overhead depends
on n. We do recommend Standard Ribbon (with smash) for small n < 10* where
Homogeneous Ribbon filters have high variance in FP rate.

183ee RocksDB’s optimize_filters_for_memory option [27].



overall space overhead. This addition is a larger 6.00% for r = 1.5,
or smaller 0.82% for r = 10.5 bits per key. Practical concerns with
splitting into two structures includes (a) essentially doubling many
of the space usage penalties associated with small structures (when
applicable), and (b) independently seeding hashes or accepting joint
construction success probability (when applicable).

For Ribbon we recommend a variant of that approach within
a single structure: using only |r] solution bits per row for some
prefix of rows, and [r] bits per row for the rest of rows. The banding
process (Algorithm 1) is unchanged, but small changes are needed
to back-substitution and query (more details in Section 5.2). Because
of Ribbon’s locality of probes in queries, unlike standard Xor filters,
a diminishingly small w/m portion of queries cross the boundary
between | r| and [r] columns (utilizing only | r] in such cases), so
space efficiency is very close to the idealized split approach, and
probably better in practice: around 1% additional space overhead
for common configurations (see e.g. r = 7.7 in Section 7).

Although the split approach enables near-continuous configura-
bility for many kinds of filters, the single-structure approach for
Ribbon filters has an advantage we call elasticity, for applications
like ElasticBF [46]. Like an Xor filter, one can drop entire columns
from a Ribbon filter, for a corresponding higher FP rate. With Rib-
bon filters, we also have the ability to drop part of the last column,
so a finished filter can be trimmed down with bit granularity. Gener-
alizing further, a finished Ribbon filter can be split to several smaller
structures with independent FP rates!®, with product as small as
the FP rate of the starting structure. Similarly, a finished Ribbon
filter could be physically (re-)partitioned at arbitrary boundaries
by duplicating as little as (w — 1)r bits at each partition boundary
such that each query accesses only one partition.

5.2 Solution structure layout

Here we examine memory layouts for the solution matrix Z €
{0, 1}™*" which is critical for fast Ribbon filter queries. Prior
work [22] only evaluated the r = 1 case, where Z is a Boolean
(bit) vector.

Xor filters conventionally use row-major layout of the solution
structure, wherein the whole row i of Z immediately precedes the
whole row i + 1 in memory. A w = 64 Ribbon filter combines
roughly an order of magnitude more rows, conditionally, than a
standard Xor filter combines unconditionally (three rows). In fact,
with number of solution columns commonly 5 < r < 15, standard
Xor filters typically access more columns than rows, while Ribbon
filters typically access more rows than columns. Although row-
major layout could likely be made efficient for Ribbon in some
special cases using SIMD, we do not find it generally workable for
a fast and highly-configurable filter.

The opposite is column-major layout, in which the entire col-
umn i of Z precedes column i+1 in memory. Column-major is essen-
tially ideal for querying a single result bit for a key, as we only have
to access a “contiguous” (usually unaligned) w bits, bitwise-AND
with ¢(x), and get the bit parity. The problem with column-major
is that accessing more result bits is not an adjacent memory access.
Although the several memory addresses are easily computed and

For Homogeneous Ribbon, the portion of the FP rate from degradation is not
independent.
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Figure 6: A solution matrix (left) and w-bit interleaved
column-major layout (ICML, right) of that matrix, mixing
7] and [r] columns as in Section 5.1. The shaded region
shows the bits used in a query crossing the boundary be-
tween |r] and [r].

can be fetched in parallel, some testing shows this to be be relatively
expensive for r > 2 for a filter that is not hot in memory cache.

Our preferred solution layout for Ribbon filters is interleaved
column-major layout (ICML), because it has locality very close
to row-major and decoding efficiency very close to column-major.
The memory space is divided into conveniently sized ICML words,
and grouped into blocks of r words. Each block is the column-
major layout of some contiguous rows of Z. See Figure 6, which
generalizes this layout to a mixed number of columns for fractional
r.

For ICML word size equal to w, at most and almost always two
words are combined for reconstructing each result bit. This means
that the amount of adjacent memory accessed for a full query is
2rw bits, while the ideal minimum is rw bits. For example, with
r = 6 and w = 64, ICML accesses 768 bits per query, with 384-bit
alignment, which translates to an average of accessing 2.25 Intel
cache lines (512 bits) and essentially 1 page (4KB) per query; with
only 6-bit “alignment,” row-major would access 1.5 cache lines per
query. A standard Xor filter accesses essentially 3 cache lines and
nearly as many pages per query.

Ribbon back-substitution is an especially fast, streaming opera-
tion for layouts based on column major. We can buffer w rows of Z
in r temporary values of width w, likely fitting in CPU registers,
and use those buffers for (a) computing the logical previous bit for
each column, and (b) flushing to our solution structure for each w
rows (rw bits).

As is well known for Bloom filters, queries can potentially be
optimized with short-circuiting: returning from a “negative” query
as soon as a probed bit is zero, ensuring the query must return FALSE.
A similar approach works for Ribbon filters using layouts based
on column-major, returning as soon as a result bit does not match
expectation. Although cache-local Bloom filters are so optimized
that this approach rarely pays off any longer [44], our Ribbon
implementation uses short-circuiting except for compile-time fixed
r < 4. The distinction is visible in observed query time ranges in
Section 7.

We also like the clean configurability of layouts based on column-
major. Parameter r should be freely chosen to balance FP rate vs.
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space usage, and that choice is much more free when it does not af-
fect instruction-level data alignment, only alignment in CPU caches
and pages, which we consider a relatively minor concern. Ribbon-
width ICML is good for using |r| columns before [r] columns
(Section 5.1), because upon determining the starting memory lo-
cation and (smallest) applicable number of columns, which can be
done without conditional branches, the remaining query code does
not have to be aware of mixed numbers of columns; see Figure 6.
([r] before |r] is better for pure column major.)

A minor disadvantage of ICML is that the number m of solution
rows must be a multiple of the number of bits in an ICML word,
which can present a conflict between configurability (accommodat-
ing any number of keys) and space efficiency for small n.

5.3 Practical hashing for Ribbon

Hash expansion. A filter structure “consuming” some quantity
of hash information can operate from a smaller hash H(x) of the
original key x [28, 29]. The practical requirements for Ribbon filters
are these:

o H(x) values must be large enough to have an insignificant
baseline FP rate due to full hash collisions, i.e. H(x1) =
H (x2) for x1 # x2. A 64-bit hash for H should suffice for
almost all non-cryptographic applications, as having 232
keys in a single filter incurs a baseline FP rate of just 2732,

o H(x) is effectively extended / expanded / remixed to what
is consumed??. For Ribbon, it is most important to minimize
correlations between the starting location and other hash
consumers. A starting location computed with fastrange [45]
on H (x) relies primarily on upper bits, so multiplying H (x)
by a large odd constant (as with Knuth multiplicative hash
[42]) seems to suffice for removing correlation. Details are
in the reference implementation of Ribbon [25].

Re-seeding. Some Ribbon designs need the ability to retry con-
struction with sufficiently independent hashing to have an indepen-
dent probability of construction success. Observe that for Ribbon
filters a full hash collision does not interfere with construction suc-
cess (it only produces a redundant equation). We find in significant
testing that modifying an unseeded stock hash value with simple
XOR with a pseudorandom seed then multiplication by a large odd
constant suffices for independent probability of construction suc-
cess. See [25] for details. Assuming uniform hashes, an effective
alternative to re-seeding on failed construction is simply to increase
m by a factor of WT“

5.4 Standard Ribbon scalability

We refer to the non-homogeneous Ribbon construction, including
smash when appropriate, as Standard Ribbon. Construction fails
with some probability depending on m, n and w, though we have no
formula. Table 1 provides some empirical data points for how much
configured space overhead, ¢ = (m — n)/n, is required for several
failure probabilities that represent different construction time vs.
solution space trade-offs. Observe that unlike standard Xor filters,
Ribbon does not exhibit sharp threshold behavior in construction

20In at least two cases [1, 23], implementations citing an asymptotic result for efficient
hashing in Bloom filters [40] had practical flaws that previous work [28] warned about.

success; almost sure construction success with Standard Ribbon
requires significantly more space overhead than 5% failure chance,
a good space-time trade-off in our judgment.

Although Standard Ribbon does not scale infinitely for fixed
ribbon width and space overhead, it is more space-efficient than
standard Xor (23% overhead) for most practical n, which can be seen
in Table 1 and Section 7. Unlike many other Gaussian structures,
construction speed is not a significant concern for scaling Ribbon
to large n.

Scaling with sharding. There are many standard or obvious ways
to construct a large, space-efficient filter from many smaller space-
efficient filters [37, 54]. Two ways of leveraging Ribbon features
are notable, but not evaluated in detail:

o If uniformly hash-partitioning keys into fixed-size data struc-
ture shards, the fractional r feature of Ribbon (Section 5.1)
can be used to accommodate variance in the number of keys
mapped to each shard.

o If determining hash ranges to assign to each shard, on-the-fly
banding allows adding entries or buckets (in sharding hash
order, independent of start location order) until one fails and
starts the next shard. The “(add till failure)” rows in Table 1
correspond to this strategy of adding entries until one fails,
so yields good average space efficiency without construction
retries, such as < 1% overhead with m = 210 per shard, not
including sharding metadata.

Shard sizes. Section 3.1 describes an inherent unlikelihood of fill-
ing all slots in a Ribbon system, even if m = w, and how the likeli-
hood is similar with m = @(w?). Because the expected number of
empty slots at first failure to add remains constant even for small
m, the median proportion of unoccupied slots at failure decreases
with m before increasing with m, for a fixed ribbon width w. For
common ribbon widths, the minimum appears to be around w? /4,
which we suggest is the natural shard size, subject to practical
adjustment for the application.

Soft sharding. With Ribbon we can apply sharding at a higher
abstraction layer than memory space, for potentially better space
efficiency. In a typical hard sharding, construction optimizes for
each shard either (a) a set of keys, (b) a memory size, (c) a hash seed,
or (d) some other configuration parameters, based on the others,
and records the optimized configuration in some metadata. The
change with soft sharding is that each shard is assigned a contigu-
ous range of Ribbon start locations (from a single Ribbon system)
rather than a contiguous memory space (containing an indepen-
dent Ribbon system). This should be a pure win for space efficiency,
because the overlap of w — 1 probing rows between adjacent soft
shards allows them to, in effect, borrow some space from each other
without expending metadata. (A Standard or Homogeneous Rib-
bon filter is a naive soft sharding with no metadata guiding the
shard assignments.) With some ordering constraints and temporary
tracking data, the Ribbon algorithm allows us to backtrack, such
as for changing the hash seed within a shard or key assignments
to shards. We do not analyze the “soft sharding” design space in
detail, but use the idea for Balanced Ribbon.
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Table 1: Standard Ribbon space overhead ¢ from empirical data

Ribbon Failure w/2 smash w/4 smash 0 smash Each additional

width probability m =210 m =210 m=210 m=2"% m=2"7 m=2%* doublingofm

w =128 0.5 0.2% 0.1% 1.0% 1.1% 2.2% 4.7% +0.38%

w =128 (add till failure) 0.2% 0.2% 1.1% 1.2% 2.3% 4.8% +0.38%

w =128 0.05 0.5% 0.5% 2.2% 2.6% 3.7% 5.9% +0.38%

w =128 0.001 1.1% 1.2% 4.1% 4.6% 5.8% >7% +0.38%

w =64 0.5 0.3% 0.4% 2.0% 3.8% 6.3% 11.7% +0.83%

w =064 (add till failure) 0.8% 0.8% 2.2% 4.1% 6.5% 12.1%  +0.83%

w =64 0.05 3.7% 2.9% 4.8% 7.0% 9.4% 15.0% +0.83%

w =64 0.001 11.4% 7.1% 9.2% 11.5% 13.8% >19% +0.83%

w=32 (addtill failure) |  5.9% 5.2% 6.3% 132%  192%  352%  +2%

w =16 (add till failure) ‘ 28.9% 27.0% 27.5% 67.3% >100% > 100% +7?%
6 BALANCED RIBBON S
Balanced Ribbon is an experimental design for scaling and space- § S
optimizing Standard Ribbon; for implementation details see [26]. - §
We intend Balanced Ribbon as an example in the design space RUBURURIE IO =
opened up by the new on-the-fly and incremental Gaussian elimina- ST Wi Ak
tion algorithm, and encourage follow-up work to explore, optimize, Level 1 5 ATV
and analyze this design space. Shard B

Balanced Ribbon extends Standard Ribbon with soft sharding ar 1 2 3 4 5 6 7 s=8

and a new balanced allocation scheme tailored to this domain (re-
lated: [4, 6, 7, 17, 49, 58]). Like many other hashing schemes, we
start with the idea that each entry has two possible locations in
the Ribbon, given by two hashes: an earlier primary location and
a later secondary location in a distinct shard. The shard with the
primary location is constructed before the shard with the secondary
location and accommodates the key if possible. If not, we say the
key is “bumped” and must be accommodated in its secondary shard,
so shards add “bumped” entries first for best chance of success.
Metadata is constructed to indicate which keys are bumped?!. The
construction is greedy in that a shard tries to accommodate as many
keys as possible, without considering where keys will be bumped to,
and constructed shards are never revisited. Difficulty arises if using
two uniform hashes, the smaller primary and the larger secondary:
later shards are dominated by entries in their secondary location.

Organizing shards for bumping. To make this work we orga-
nize the soft shards into levels 1..¢, with level i containing exactly
[2¢7171] shards, so we assume a power of two number of shards
overall, s = 2f1. Unlike some multi-level hashing schemes [12,
41, 43], an entry’s primary location can be on any level i, with its
secondary location uniformly on level min(i + 1, ). Because no
secondary locations are in level 1, we overload it with primary
locations; level 1 shards have relative weight 1+ & for primary loca-
tions and other level shards have weight 1 — «. See Figure 7. With
average n/s keys per shard, we choose a ~ 3.5/ \/n_/s to ensure
a sufficient supply of entries even for shards with three Poisson
standard deviations below the mean number of entries. (We use
a = 1/8 for n/s ~ 1000.) Assuming we allocate our space overhead

2There is no such disambiguation in [21] and a query would combine information
from both locations. This significantly complicates the linear system, however.
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Figure 7: Bumping behavior between levels of Balanced
Ribbon. The expected relative quantity of entries with pri-
mary locations in each level is indicated by [l where
are bumped and added in their secondary location [:-3. Not
shown: allocation overheads (¢), Poisson variances, bucket
boundaries, and dispersion within each shard.

perfectly, the average number of entries bumped from each level 1
shard will be an/s. Because level 2 shards are half as many, they
receive 2an/s entries on average for adding in secondary location.
With those bumped entries, level 2 shards are now overloaded to
relative weight 1 + « compared to 1 — « for later shards. With this,
we have a recursive structure to ensure a continuous supply of
entries eligible for bumping down to the last shard. (Like spatial
coupling [57] and “always go left” [56], we are making productive
use of less randomness.)

The last shard (level ¢) is different but does not need to be com-
plicated. If we configure our allocated space overhead assuming
Standard Ribbon overheads for the last shard, along with tighter
overheads for the other shards, it seems to work (single shard Bal-
anced Ribbon = Standard Ribbon). For large number of shards, we
observe the Balanced Ribbon final shards either completely over-
whelmed with bumped entries (construction failure) or receiving
almost no bumped entries. We believe this is because the overall
variance in utilization of slots in all prior shards is concentrated
into the last shards, and that variance is large relative to a single
shard. Because the variance is small overall with a large number of
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shards, construction success is more predictable at scale (apparent
threshold behavior).

Buckets for bumping. We use another (semi-)independent hash
to order or group keys within a shard strictly for bumping. Selecting
a threshold on that hash works well for both Ribbon and metadata
space efficiency. First, we have chosen our shard size such that
controlling the number of entries going into a shard is much more
important than the particular set of entries. Second, a ©(log(n/s))
bit threshold value is small metadata per shard. However, we do
not want to incur the CPU time for sorting entries into so many
buckets per shard.

Instead of a threshold we use ©(log(n/s)) buckets of geomet-
rically distributed sizes that can be selected independently, using
the incremental feature of Ribbon to backtrack on failed buckets.
Using some bit tricks to approximate a geometric distribution with
p = 2795 seems better than p = 271, perhaps due to variance in
actual bucket sizes. We prefer 8 buckets per shard for 8 bits of meta-
data per shard, 0.008 bits per key for common shard size. A subtle
part of maximizing space efficiency with independent buckets and
soft sharding is to attempt adding a larger (in expectation) bucket
in shard i + 1 before attempting to add a smaller (in expectation)
bucket in shard i, if the two shards are in the same level. Successfully
adding the smaller could overflow enough to make it impossible to
add the larger; on average, the better greedy choice is trying to add
the larger bucket first. For CPU efficiency, we skip attempts to add
a bucket that is very likely to fail given the number of successful
additions to the shard.

Overall. Balanced Ribbon construction resembles an external sort
between CPU cache and main memory. Queries depend on just
one bit of sharding metadata, out of a typical 8 bits per shard.
Space usage for w = 64 Balanced Ribbon is 1.0051 + 0.008 bits per
key, relative to the information-theoretic lower bound A, as shown
in Figure 5. We have tested Balanced Ribbon with these space
efficiencies up to 4 billion keys; arbitrary scaling might require
natural increases in w (w ~ log n and thus n/s ~ log® n) or might
benefit from design changes.

7 EXPERIMENTS

Setup. For validation we extend the experimental setup used for
Cuckoo and Xor filters [35, 38, 39], with our code available in our
fork on GitHub [26]. Timings are performed on a single-socket
Intel® Xeon® D-2191 (Skylake DE) with 64GB RAM. Tests are com-
piled with GCC 8.4.1, using g++ -03 -DNDEBUG -march=skylake-
avx512. The Ribbon code is portable C++ using no processor intrin-
sics but using compiler built-ins for prefetch, count leading/trailing
zero bits, and bit parity.

Results. First, Figure 1 shows which approach is fastest for various
space overheads and various FP rates, and query and construction
times for the corresponding overall fastest approach. It uses a mix
ofne {106, 107, 108}; more details in Section 1. To maximize the
coverage of “BlockedBloom” in the figure, we include an AVX2
SIMD-optimized implementation from RocksDB [24] that sacrifices
SIMD-optimized construction for enhanced configurability (any
number of probes) and minimized FP rate compared to [44]; all
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Table 2: Experimental performance comparisons

Space | ns/key, n=10° | ns/key, n=108
Configuration ovr% | con query con query
| FP rate around 1%, Ribbons using r =7 |
BlockedBloom[44]  52.0 11 14+0 32 37+0
BlockedBloom[24]  49.8 21 10x0 72 36+0
Cuckoo12f  46.2 69 210 147 58+ 0
Cuckool12  40.3 91 200 205 58+ 0
Mortonl12  40.5 87 553 106 125+13
Xor, r = 7% 23.0 195 210 264 66 +1
Xor,r =8 23.0 148 150 211 50+ 0
Xor+,r =38 14.5 171 35%1 299 104+ 10
Homog., w = 16 52.0 56 406 101 88+ 6
Homog., w = 32 20.6 58 386 116 85+5
Standard, w = 64 14;20 71 42+5 130 94 +7
Homog., w = 64 10.1 83 397 160 90 +6
Standard, w = 128 6;8 166 582 235 140+ 26
Homog., w = 128 5.1 164 53+3 270 145+ 25
Balanced, w = 327 15.3 84 47+6 278 1045
Balanced, w = 32 2.5 162 485 372 107 £5
Balanced, w = 64 0.7 292 4945 516 1115
Balanced, w = 128 0.3 985 66+1 1335 162 + 29
Homog.32,r =7 20.6 58 386 116 85+5
Homog.32,r =7.7 22.7 61 43+4 120 96 +7
Homog.32,r =8 22.1 61 39+5 116 86 +9

| FP rate around 10%, Ribbons using r = 3

Xor, r = 3%
Homog., w = 16
Homog., w = 32

Standard, w = 64
Homog., w = 64
Standard, w = 128

Homog., w = 128
Balanced, w = 32
Balanced, w = 64

23.1
34.6
16.1
14;20
8.0
6:;8
4.2
2.8
0.8

194
46
52
66
71

145

156

155

288

16 +£0
23+0
21+0
22+0
210
35+0
33+0
29+0
29+0

264

91
108
124
152
213
266
377
517

| FP rate around 27!, Ribbons using r = 11 |

Cuckool167
Cuckoo16
CuckooSemiSort
Xor, r =12

Xor, r = 10.666%
Xor+, r = 11%
Homog., w = 32
Standard, w = 64
Homog., w 64
Standard, w = 128
Homog., w = 128
Balanced, w = 32
Balanced, w = 64

36.0
30.2
26.6
23.1
23.0
12.8
28.0
14;20
12.7
6;9
7.3
2.3
0.5

68
84
146
175
191
185
74
78
89
173
189
169
301

20£0
20+ 0
50+ 0
23+0
20+ 0
38+0
51+2
54 +3
51+3
71+ 9
72+9
60 + 2
61+3

147
201
323
251
284
317
129
139
163
247
292
394
536

59+0
59 +1
143+ 4
74+ 4
61+0
107 £ 2
118 + 32
138 + 41
118 £ 26
164 + 39
166 + 43
142 + 32
147 + 28

T Larger space allocated to improve construction time.

i Potentially unfavorable bit alignment.
; Standard Ribbon space overhead depends on n.




“BlockedBloom” in this paper use aligned 512-bit blocks. To maxi-
mize coverage of “Bloom” we include an obvious variant splitting
probes between two independent blocks.

Second, Table 2 shows detailed timings for some specific config-
urations with approximate f € {273,277, 2711}, Construction and
query times are given in nanoseconds per key over at least 5 - 107
keys, with a range of query times for different ratios of positive
vs. negative queries. The timing data for n = 10° represents the
core CPU time of each approach with negligible memory access
overheads, while n = 108 includes memory access overheads. The

l’(L{)l — 1 where the FP rate f is
og, (f 1)

measured by sampling. Standard Ribbon has distinct overheads for
the different n. Cuckoo12 and Morton12 use 12 bits per cell [11, 35],
for similar FP rate as r = 9 Xor or Ribbon.

Third, Table 1 shows many more space overheads for Standard
Ribbon, which mostly improve for smaller n. While we do not
include timings for these smaller n, we can infer that Standard
Ribbon, with or without smash, takes territory from other Ribbon
approaches in Figure 1 (a) for smaller n.

reported space overhead is

Observations. When saving space compared to Bloom and Cuckoo
(incl. Morton), we see in Table 2,

e Ribbon can achieve much lower space overheads than the
practical alternatives. w = 64 Balanced Ribbon has less than
1% overhead except when r < 3 (bottom right of Figure 1).

e Ribbon mostly wins in construction time, sometimes by a
large factor. Ribbon construction times are generally only
higher than Xor when saving space compared to Xor.

e Xor mostly wins in query time. For smaller rw, which is
proportional to the contiguous memory loaded per query,
Ribbon query times are similar to Xor. Ribbon query times
increase with r and/or w.

e Ribbon has a clear advantage for configurability (aside from
Bloom). Xor and Cuckoo incur a measurable penalty when
cells are not aligned to a friendly size, such as 4, 8, 12, or
16 bits, and have limited options for partial-bit granularity.
Ribbon performance is continuous for any integer r, and the
penalty for arbitrary fractional average r is small .

e Ribbon can easily trade space efficiency for construction
time efficiency (like Cuckoo), by increasing allocated space
overhead; see T vs. corresponding non-7 configurations. Xor
construction time is more fixed.

A somewhat surprising result is that w = 32 Balanced Ribbon
is sometimes faster and more space efficient than other Ribbon
variants with w = 128. We can reason that the benefits of smaller
ribbon width sometimes exceed the costs associated with balancing.
We consider w = 128 Balanced Ribbon “impractical” because the
execution time is much higher for a tiny benefit in space usage.

Limitations. A notable limitation of this test is that it tests query
throughput more than query latency. Like executing a batch of filter
queries, the test does not depend on the result of each query for
what to do next. For applications executing a single filter query with
unpredictable outcome, main memory latency can be 200-300ns.
However, we expect latency to be similar between the competing
approaches, because aside from Balanced Ribbon sharding meta-
data (very small, cachable) and Xor+ compression metadata (not
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as small), only constant size metadata is read to determine which
memory to fetch to complete a query. Although the test relies on
out-of-order execution between queries for memory prefetching,
applications can use explicit prefetching.??

To minimize sampling noise, the test machine was otherwise
idle. This does not match a production environment, but we have
not seen a significant difference in relative results when running
the tests under load.

To match existing test code, hash seeds are not configurable.
All structures are configured for high chance of construction suc-
cess (roughly 99% or more). In practice, approaches other than
BlockedBloom and Homogeneous would incur some small addi-
tional overheads associated with seeding and retries.

8 CONCLUSION

Our result changes the narrative around data structures constructed
with Gaussian elimination vs. with peeling. With our new algorithm
and the query structure from [22], Gaussian elimination can be
faster than peeling while also opening up better space efficiency.

On this foundation we have built Ribbon filters with the follow-
ing efficiently scaling variants.

o The Homogeneous Ribbon filter is simple and has a construc-
tion algorithm that never fails. We provide a full analysis.

e The Balanced Ribbon filter leverages the on-the-fly and in-
cremental construction algorithm in an experimental load-
balancing scheme that further reduces space overhead.

As with Bloom filters, the true practicality of Ribbon also comes
from being able to configure it for or adapt it to the application,
including dynamic conditions. This includes using any amount of
space to efficiently represent any number of keys, even by shrinking
the structure after construction. Ribbon filters replicate the smooth
FP-rate-for-space configurability of Bloom filters and extend that
with configurability between space efficiency and time efficiency.

Future work could pursue the following goals.

e Deepen the theoretical understanding of Ribbon filters to
better guide parameter choices in practice.

e Manage the variance of FP rate of Homogeneous Ribbon
filters at small scales.

o Further explore the design space surrounding Balanced Rib-
bon for approaches that are better and/or easier to analyze.

o Create a SIMD-optimized implementation of Ribbon queries,
perhaps using AVX512 POPCNT and/or 8-bit ICML rather
than w-bit ICML.

e Explore how competitive Ribbon can be as a data structure
for static functions, including cases where the number r of
solution columns is quite high, e.g. r > 32.
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