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Abstract 
The sufix tree of a string is the fundamental 

data structure of combinatorial pattern matching. 
Weiner [Wei73], who introduced the data structure, 
gave an O(n)-time algorithm for building the m f i z  
tree of an n-character string drawn from a constant 
size alphabet.  In ths comparison model, there is a triv- 
ial s2(n log n)-time lower bound based on sorting, and 
Weiner's algorithm matches this bound trivially. For 
integer alphabets, ( 1  substantial g a p  remains between 
the known upper a n d  lower bounds, and closing this 
g a p  is the main open question in the construction of 
sujjiz trees. There 1s no super-linear lower bound, and 
the fastest  known algorithm was the O(n1ogn) time 
comparison based a,lgorithm. We settle this open jorob- 
lem b y  closing the gap: we build sufix trees in linear 
time for  integer alphabet. 

1 Introduction 
Given a string S E En, the sujjiz tree Ts of S is the 

compacted trie of all the suffixes of SY,  Y e E. For 
many reasons, this is the fundamental data structure 
in combinatorial pattern matching. It has a compact 
O(n)  space representation which has many elegant 
uses. Furthermore, Weiner [Wei73] , who introduced 
this powerful data structure, showed that TS can be 
constructed in O ( n )  time for constant size alph.abet. 
This construction and its analysis are nontrivial. Con- 
siderable effort has been spent on producing simplified 
linear time suffix tree constructions [CSSS, McC761, 
though all such algorithms have been variants of the 
original approach of Weiner. 

The constructioii of suffix trees remains an a.ctive 
area of research [DK95, Kos94, FM961. Several open 
problems remain. The most important of these has to 
do with the size of the alphabet and its effect 010 the 
time needed to build suffix trees. In addition to the 
case of constant-sized alphabet, there are two other 
significant cases: the case of unbounded alphabet, in 
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which string characters can only be mani ulated by 
comparison in some total order on 1: U {Y!; and the 
case of integer alphabet. 

Before we review the complexity of building a suf- 
fix tree, we consider the desired format of our output. 
Suffix trees are often used as indices. Therefore, the 
operation they should support is that of tracing from 
the root with some query pattern. Thus, one typ- 
ically assumes a format for the suffix tree in which 
the edges leaving a node are lexicographically sorted, 
that is, they are sorted by the first character of the 
string labeling them. In this representation, sbrting 
is a lower-bound for suffix tree construction, since we 
can use the suffix tree to retrieve the sorted order of 
the input in linear time. 

Therefore, in the general alphabet, case, we have a 
lower bound of s2(n log n )  for suffix tree construction1, 
Any of the linear time algorithms for suffix tree con- 
struction on constant size alphabet directly give an 
O(n  1% "d. t ime algorithm in this case. More gener- 
ally, if CT istinct characters occur in a. string, the lower 
and upper bounds in the character comparison model 
match, at  O(n log 0). 

The interesting case occurs when the alphabet con- 
sists of integers. If we insist that the edges at each 
node be sorted, then integer sorting is still a lower 
bound, and we can assume that input characters have 
been sorted. For some integer alphabets, where no 
linear time sorting algorithm is known, sorting will 
then be the bottleneck, while for some integer alpha- 
bets, such as those in a polynomial range, sorting can 
obviously be done in linear time. See [Tho971 for a de- 
scription of the state of the art in integer sorting. If we 
do not insist that the edges be sorted, then dynamic 
hashing can be used to speed up suffix tree construc- 
tion. In this paper, we consider only deterministic 
algorithms, and in the deterministic case, weakening 
the sorting condition has not been shown to yield a 
faster algorithm. 

Once the characters are sorted, WE' can replace each 
character by its rank in the sorted list. We then 
get an equivalent integer alphabet in the range 1, n].  

ger alphabet suffix tree construction without getting 
This case seems to capture all of the difficulty o I inte- 

'In this case, it is possible to give a "stronger" 
lower bound. The Q(n log n )  bound can be obtained 
from element distinctness, even without assuming the 
sorted output form. 
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bogged down in the details of integer sorting. There 
is no non-trivial lower bound for buildlng such trees, 
while the best upper bound known is the straightfor- 
ward O(n1ogn). Note that in [DK95], Delcher and 
Kosaraju claimed a linear time algorithm for this prob- 
lem, but this algorithm turned out to have a bug in i t ,  
as they noted in [DK96], where they also posed closing 
the log gap in the complexity of suffix tree construc- 
tion for the linear alphabet case as an important and 
difficult open problem. 

In this paper, we solve this open problem and close 
the gap by giving a linear time suffix tree algorithm 
for integer alphabets in the range [l, n]. We do so by 
introducing an algorithm that completely breaks with 
the Weiner approach. Before outlining the algorithmic 
approach, we give some preliminary definitions. 
1.1 Preliminaries 

Let S { l , . . . , n } n .  The suffix tree TS of S is 
the compacted trie2 of all the suffixes of Skr, where 
Y { 1, . . . , n}.  Throughout the paper, we will assume 
that suffix trees are represented as follows. Leaf li 
represents suffix S[i,n]. Given i ,  we can access li in 
constant time. Each internal node v has a length L ( v )  
which is the sum of the edge lengths on the path from 
the root to W. Then the string at  v, denoted a(v) ,  is 
S[ i , i  + L ( v )  - I] where li is any leaf below v. The 
children of node v are stored in a list sorted by the 
first character on the edge from v. See Figure 1.1 for 
an example. 

The following well-known lemma gives suffix trees 
a nice structure. 

Lemma 1.1 ([Wei73]) Let a E {1 ,..., n }  and cy E 
(1,. . . , n}*. Ifthere 2s a node v zn Ts such that a(.) = 
a a ,  then there as a node w in Ts such that a ( w )  = a.  

Given this lemma, we can define, for every node in 
a suffix tree, the safiz link sl(v) = w, where U and w 
are defined as in Lemma 1.1. Notice that sl(.) links 
form a tree rooted at  the root of Ts. The depth of any 
node v in this SI(.) tree is then just L(v). 

Let lcp(Cu, p) be the length of the longest common 
prefix of two strings. Let lal, the length of string a ,  
be m, for cu E E“. Let l c a ( v , w )  be the least com- 
mon ancestor of two nodes in a tree. The property 
of suffix trees most often exploited algorithmically is 
the following relationship between 1cp in S and lca 
in Ts. 

Vu, w E Ts, Icp(a(v), a(w)) = Ia(lca(w, w))l. 

A useful feature of this equality is that least common 
ancestors can be computed in constant time after lin- 
ear preprocessing [HT84]. Thus arbitrary substring 
equality can be tested in constant time after a linear 
preprocessing of a string, as long as the suffix tree can 
be built in linear time. 

’A compacted trie differs from a trie in that max- 
imal branch-free paths are replaced by edges labeled 
by the appropriate substring. 

1.2 Algorithm Outline 
As noted above, a suffix tree is the compacted trie 

of the suffixes of a string. Our approach for finding 
the suffix tree is to compute the compacted trie of 
different subsets of the suffixes of a string and then 
merge the trees. In particular, we will show how to 
recursively compute the compacted trie of all suffixes 
beginning at  odd positions. We call this tree To and 
note that it has n/2 leaves, and is therefore half the 
size of Ts. From To we will show how to compute 
T,, the compacted trie of suffixes beginning in even 
positions. Character sorting will play a prominent r6le 
in both these steps, and so this is the point where we 
take advantage of the assumption that the alphabet 
consists of small integers. 

Finally, we must merge To and Te into the final tree. 
This step is the crux of the matter. Notice that while 
both To and T, have representations which are of size 
O ( n ) ,  they implicitly share O(n’) characters in com- 
mon. We must therefore exploit structural properties 
of suffix trees to perform this step in O(n) time. This 
step does not rely on sorting, and so it works on odd 
and even trees over an arbitrary alphabet. While a 
similar odd/even approach was taken in [FM96], the 
algorithm in that paper relied heavily on randomiza- 
tion and only works for binary alphabets. The main 
result in that paper was to achieve a logarithmic time 
and linear work suffix tree construction on a PRAM 
for binary strings. 

In Sections 2, 3, and 4, we present the three main 
steps of the algorithm. 

2 Building the Odd Tree 
In this section, we show how to compute To, the 

compacted trie of all suffixes of S beginning in odd 
positions. Figure 2.2 gives the odd tree for our ex- 
ample string. We first map pairs of characters into 
single characters as follows. For i = 1 to n/2, form 
pairs (S[2i - 11, S[2i]). Radix sort them in linear time, 
remove duplicates, and compute the function S’[i] = 
rank of (S[2i - 1],S[2i]) in the sorted list. S‘ can 
be computed in linear time and is a string of length 
n/2 over integer alphabet [l, n/2]. For our example, 

. 
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S’ = 212343Y. 
Now recursively compute Tsi, the suffix tree of S’. 

See Figure 2.3 for Ts/ for our example string. No- 
tice that anv odd suffix Sr2i - 11.. .S[nlY is a suffix 

L A  

S’[i] . . . S’[nj2]Y. So each ieaf li bf Ts, becomes L-1 
of To. Any internal node of TsJ with length i becomes 
an internal node of length To with length 2i. Call this 
tree T’. So T’ only differs from Tsc in its labels. 

T’ and To are quite similar. T’ contains all odd 
suffixes of S but is not the compacted trie of these 
suffixes. To see why, notice that all internal nodes of 
T’ have even length, while two odd suffixes of S may 
have a longest common prefix of odd length. Put an- 
other way, if node U in Ts, has two children v and w so 
that the first character on edge ( U ,  v) is ( a ,  b )  and the 
first character on edge ( U ,  w) is ( a ,  c ) ,  for a ,  b ,  c E [1, n] ,  
then the corresponding node U in T‘ would have two 
children whose edges start with the same character, 
and so T’ is not a trie at  all. 
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Figure 1.1: Suffix t,ree of string S = 121112212221Y. Numbers in boxes represent which suffix ends at that leaf. 
Numbers next to internal nodes represent the string length (L ( . ) )  of that node. 

So we must do 5 final patching of TI in which we 
take, for all internal nodes U ,  all of U ' S  children whose 
edges start with each character and introduce ai new 
node between U and these children. This can be done 
very quickly since the edges coming from any node are 
lexicographically sorted by their first two characters 
(since we chose the alphabet for SI by the raink of 
character pairs in such a lexicographic sorting). So 
for each edge, we need only check if its first character 
agrees with the first character of the proceeding edge, 
and if so, make the minor adjustment. Finally, it may 
be that the edges to all of U ' S  children starts with the 
same character, in which case U would end up with 
only one child. If so, we delete U .  This clearly takes 
only constant timc per edge and constant timle per 
node, and so linear time overall. 

Lemma 2.1 If T( n) zs the tzme zt takes our algo rzthm 
to  buzld the sufix tree of a strzng S E (1,. . . n } " ,  then 
To can be buzlt tn l"(n/2) + O(n).  

We will show that we can get T, from To in linear 
time, and that we tan merge To and T, in linear time. 
This will establish the main claim, that we can build 
a suffix tree in linear time. 

We conclude that 

3 Building the Even Tree 
Suppose we are given an inorder traversal of the 

leaves of a tree, and the depth of the lca of adjacent 

leaves in this ordering. Then it is straightforward 
exercise to reconstruct the tree in linear time. Simi- 
larly, suppose we are given the lexicographic traversal 
of the leaves of a compacted trie, which we call the 
lex-orderzng, and the length of the longest common 
prefix of adjacent leaves. Then we can reconstruct the 
trie in linear time [FM96]. We derive these two pieces 
of information for the even tree from the odd tree. 

First, consider the lex-ordering. We must derive the 
lexicographically sorted order of the even suffixes of S. 
Notice that we have the lexicographic ordering of the 
odd suffixes of S,  given trivially by the lex-ordering 
of the leaves of To. Also, notice that an even suffix 
is a single character followed by an odd suffix. Thus, 
we have a type of radix sort problem. We need only 
stably sort the lex-ordered leaves of To, using the key 
S[2i] for any odd suffix S[2i + 13. By the correctness 
of radix sort [AHU74], the even suffixes are correctly 
sorted. Therefore, we can get the lex-ordering of the 
leaves of T, in linear time. The details of the whole 
process are evident from the following example. 

In our example string, we get the ordering 
[3,1,5,7,11,9,13] for the leaves of To (See Figure 2.2). 
We must therefore stably sort the follow tuples: 
~ ( ~ , ~ ) 1 ( ~ 1 ~ ) 1 ( ~ 1 ~ ) , ( ~ , ~ ~ ) , ( ~ , ~ ) , ( ~ , ~ ~ ) 1 ~  To repeat, 
the 1's and 2's placed in the tuples are the 2nd, 4th, 
6th, loth, 8th and 12th characters of the string, which 
are the characters preceding the 3rcl, 5th, 7th, l l t h ,  
9th, and 13th suffixes. Notice that we do not include 
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Figure 2.2: Odd tree of string S = 121112212221Y 

the 1 suffix since it is not preceded by any character. 
Stably sorting by the first number yields the ordering 

and yields [4 ,8,12,2,6,10]  as the sorted order of the 
even suffixes. 

Now, given two leaves lzi, 12j of T,, we wish to  deter- 
mine Icp(lzi, I z j ) .  As noted above, we can preprocess 
To in linear time so that we can get l c p  information 
about odd suffixes in constant time. Having done this, 
we note that 

[ (I ,  5 ) ,  (1 ,9) ,  (1,13),  (2 ,3) ,  (2 ,7) ,  (2,11 I .  Subtracting 
one from the second index completes t h e computation 

These operations yield the tree in Figure 3.4. 

Lemma 3.1 Given S E (1,. . . ,T I } :  and its odd tree 
To, T, can be constructed in O(n )  tame. 

We conclude that 

4 Merging the trees 
In this section, we show how to merge T, and To 

into Ts. This routine will run in linear time, thus 
completing the suffix tree construction algorithm. 

First, consider how one would merge T, and To if 
they were uncompacted, so that each edge would be 
labeled by a single character. The obvious procedure 
is a coupled depth first search tour of the two trees. 
That is, start by identifying the roots of both trees. 
Now simultaneously take the edge whose label is 1 in 
both trees, and recursively merge the two subtrees. 
When the DFS merge of these two subtrees is done, 
then we do the same for the edge whose label is 2, and 
so on for all the edges incident on the root. At any 
stage, if only one of the trees has an edge labeled i, 

then we need not recurse on that subtree since there 
is nothing to  merge. 

If we were merging uncompacted tries, then this 
procedure would give an optimal and simple method 
for doing so. Now consider just the first step of this 
procedure on a compacted trie. We take the children 
of the root whose first character is a 1 (or whatever 
the first shared character is). Each of these edges rep- 
resents a string of up to  R(n) characters, and so we 
cannot spend the time to  see if the edges really agree 
on all the characters. This would give an O(n2) time 
algorithm for merging. Also, we must take care of de- 
tails such as the fact that the edges we are merging 
need not be of the same length, and so, when we merge 
two edges, we must see if the shorter is a prefix of the 
longer and break the longer edge at an appropriate 
length. 

Suppose we had an oracle for telling if two sub- 
strings of 5' are equal. Then we could use it in our 
coupled depth first search, in place of simply testing 
character equality. Most of the difficulty in merging 
the trees would be overcome. Note than even still, 
such an oracle would be insufficient to solve the prob- 
lem, at least by such a naive coupled-DFS algorithm, 
since two edges might agree on some proper prefix, 
and thus require partial merging. Furthermore, no 
such oracle is available, so instead, we use a weak or- 
acle which will never tell us that equal edges are dif- 
ferent, but may sometimes tell us that unequal strings 
are the same. Then we will overestimate the depth to  
which the trees need to be merged, but we will never 
merge too little. We will use such a weak oracle, and 
then show how to unmerge the parts of the trees which 
should not have been merged. This second part will 
take advantage of the structural information of suffix 
trees. In fact, this checking part will be so good that 
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Figure 2.3: Suffix tree of string S' = 212343Y 

we can use any weak oracle. We will show that it suf- 
fices to report that two edges are equal if they share 
the same first character. To repeat, using this simple 
oracle will allow us to merge properly the parts of To 
and T, which need to be merged, but may merge two 
subtrees which should not be merged. So we must 
show how to unmerge the incorrectly merged parts. 
See Figure 4.5 for the result of such a merger on our 
example string. 

Let M be the tree derived by a merge-DFS of To 
and T, using our weak oracle, that is, M is obtained 
by merging To and T, via a coupled DFS. If we decide 
that two edges are equal, by testing if they start with 
the same character, then we break the longer of'the 
two edges and merge its prefix with the shorter of the 
two edges. In this way, we only merge edges of equal 
length. This procedure proceeds down to the leaves in 
O(n) time. 

Consider some node U .  We wish to check if the 
merge-DFS went too far in merging until U ,  or if the 
tree structure is good as far down as U. We call a node 
of M odd if it occurred in To and even if it occurred in 
T,. Notice that a node, for example the root, can be 
both odd and even. Recall that L ( u )  = Ir(u)I.. L(u) 
can be looked up for each node in M by consulting To 
or T,. Let 12i and l f j - 1  be descendants such that U is 
their least common ancestor in M .  Such an oddleven 
pair must always exist for nodes in the merged re- 
gion, even if the merged node is a leaf in the original 
tree. Let i(u) be defined to be Icp(lni,lzj-1). Now 
we check the status of U as follows. 

Lemma 4.1 Let U: lzi and 12j-1 be as defined above. 
U is properly mergeti in TS i f L ( u )  = L(u).  

The alternative is 1;hat L(u)  > L(u) ,  in which case 
we have merged too far. So we must show how to 
compute L(u) for all merged nodes U ,  and show what 
to do when Lemma 4.1 is violated. 

4.1 Computing 

descendants of U. But 
Recall that L(u) = Icp(lza, lzj-l), for some 12i, l z j  

Let v = Ica(lZi+l, / ~ j ) .  Then we will show that k (u )  = 
1 + ,f,(v), as long as U is not the root of M .  Define 
d(u) = v where U and v are as above. Compute d for 
every merged node in M ,  other than the root. See the 
dotted edges in Figure 4.5. 

Lemma 4.2 The function d deJines a tree on the 
nodes of M .  Further, L(u)  = the depth of U in the 
d tree. 

Proof: In our definition of the d fiinction, there is 
some non-determinism in terms of the choice of de- 
scendants lzi and l z j - 1 .  However, ib doesn't matter 
which odd and even descendants we pick, since they 
all have the same longest common prefix. This is be- 
cause they all have the same least common ancestor in 
Ts. Thus, k ( u )  has the same value, no matter which 
odd and even descendant leaves we pick. 

Now we show that if d(u)  = U ,  then ,!(U) = 1 + 
L(v) .  This establishes both that the d pointers form 
a tree, and, since i(Toot) = 0, that f(u) is the depth 
of U in this tree. Since d U )  =: U, there is some pair 

But we know that lcp( lz i , lz j -~)  = 1 t lcp(lzi+l,Zzj). 
Finally, by definition L(u)  = Icp(lzi, 1 z j - l )  and, from 
the observation above that all odd/,even descendant 
pairs give the same L ,  L(v)  = Icp(lza+l,lzj), thus 

The depth of every node in the d tree is determined 
in linear time by DFS. The only other step is the com- 
putation of least common ancestors, which, as noted 

l z i ,  12 j -1  with lca U ,  such t 6 a t  the lca of Zzt+l ,  l z j  is U. 

establishing the lemma. 
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Figure 3.4: Even tree of string S = 121112212221Y 

above, requires linear processing and constant time 
queries [HT84]. Notice, for example, that in Fig- 
ure 4.5, L(lca(l5,lg)) = 3, i(lca(ls,l9)) = 2 and 
i ( lca( l9 ,  I l l ) ) )  = 2. 

4.2 Using to Unmerge the Tree 
We now show how to use L to  partially unmerge To 

and T, within M .  We can either completely unmerge a 
node U or partially unmerge it. Let p ( u )  be the parent 
of U in the original tree (T, or To). Let p'(u) be the 
parent of U in M .  Completely unmerging a node U 
means setting $ ( U )  = p(u) ,  that is, reseting the par- 
ent of U to  be its original parent in the unmerged tree. 
If Lemma 4.1 is violated, so that L(u)  > i ( u ) ,  then a 
complete unmerge is not always the correct thing to  
do. Consider, for example, Figure 4.5. It would be 
incorrect to  completely unmerge node lca(l5, l g ) .  In- 
stead we need to  introduce a node which is the parent 
of /5 and /s and set its string length to 3, its depth in 
the d tree. This is a partial unmerged. Both types of 
unmerges are handled by the following procedure. 

Define a node U to  be a border node if L(u)  < L(u) ,  
but & ' ( U ) )  = L(p'(u)).  Notice that the set of border 
nodes form an anti-chain in M .  We can easily find all 
the border nodes in linear time. Now, for each border 
node U ,  we perform the following operations. Let T," 
be the odd tree below U and let T," be the even tree 
below U in M .  No node in T," or T," should be merged, 
so unmerge them all by reseting, for each such node 
w, p'(v) = p(w). The remaining question is what node 
to hang T," and T," off of. But the set of border nodes 
are exactly those nodes at which we need a partial 
unmerge. These are handled, for each border node U ,  
as follows 

1. Create a new node U' and make it a child of p'(u).  

3. Hang T," and T," off of U'. Order the children of 
U' lexicographically. 

This implements the partial unmerge case described 
above. 

When this procedure is completed for all border 
nodes, the tree will be correct, since Lemma 4.1 will 
be satisfied for every node. The total running time 
is linear. We conclude that: 

Theorem 4.3 Given a string S E (1 , .  . . ,n}", the 
sufix tree Ts of S can be deterministically constructed 
in O(n )  tame and space. 

Proof: By Lemmas 2.1 and 3.1, and the discussion 
of this section. Note finally that the children of all 
nodes are sorted by their first character. Thus the 
tree produced is properly sorted, as required by the 
recursion. 
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Figure 4.5: “Merging” even and odd trees of string S = 121112212221Y yields this tree. The dashed edges are 
edges which have heen merged too far. The dotted lines are the d(.)  tree described below. 
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