
Optimal Suffix Tree Construction with Large Alphabets

M,artin Farach*
Rutgers University and Bell Labs

Abstract
The sufix tree of a string is the fundamental

data structure of combinatorial pattern matching.
Weiner [Wei73], who introduced the data structure,
gave an O(n)-time algorithm for building the m f i z
tree of an n-character string drawn from a constant
size alphabet. In ths comparison model, there is a triv-
ial s2(n log n)-time lower bound based on sorting, and
Weiner's algorithm matches this bound trivially. For
integer alphabets, (1 substantial g a p remains between
the known upper a n d lower bounds, and closing this
g a p is the main open question in the construction of
sujjiz trees. There 1s no super-linear lower bound, and
the fastest known algorithm was the O(n1ogn) time
comparison based a,lgorithm. We settle this open jorob-
lem b y closing the gap: we build sufix trees in linear
time for integer alphabet.

1 Introduction
Given a string S E En, the sujjiz tree Ts of S is the

compacted trie of all the suffixes of SY, Y e E. For
many reasons, this is the fundamental data structure
in combinatorial pattern matching. It has a compact
O(n) space representation which has many elegant
uses. Furthermore, Weiner [Wei73] , who introduced
this powerful data structure, showed that TS can be
constructed in O (n) time for constant size alph.abet.
This construction and its analysis are nontrivial. Con-
siderable effort has been spent on producing simplified
linear time suffix tree constructions [CSSS, McC761,
though all such algorithms have been variants of the
original approach of Weiner.

The constructioii of suffix trees remains an a.ctive
area of research [DK95, Kos94, FM961. Several open
problems remain. The most important of these has to
do with the size of the alphabet and its effect 010 the
time needed to build suffix trees. In addition to the
case of constant-sized alphabet, there are two other
significant cases: the case of unbounded alphabet, in

*Department of' Computer Science, Rutgers Uni-
versity, Pis-
cataway, NJ 08855, USA. (farach@cs.rutgenr. edu,
http://www. cs.rutgers.edu/-farach). Supported by
NSF Career Delelopment Award CCR-9501942,
NATO Grant CRlZ 960215, NSF/NIH Grant BIR
94-12594-03-CONE' and an Alfred P. Sloan Research
Fellowship.

which string characters can only be mani ulated by
comparison in some total order on 1: U {Y!; and the
case of integer alphabet.

Before we review the complexity of building a suf-
fix tree, we consider the desired format of our output.
Suffix trees are often used as indices. Therefore, the
operation they should support is that of tracing from
the root with some query pattern. Thus, one typ-
ically assumes a format for the suffix tree in which
the edges leaving a node are lexicographically sorted,
that is, they are sorted by the first character of the
string labeling them. In this representation, sbrting
is a lower-bound for suffix tree construction, since we
can use the suffix tree to retrieve the sorted order of
the input in linear time.

Therefore, in the general alphabet, case, we have a
lower bound of s2(n log n) for suffix tree construction1,
Any of the linear time algorithms for suffix tree con-
struction on constant size alphabet directly give an
O(n 1% "d. t ime algorithm in this case. More gener-
ally, if CT istinct characters occur in a. string, the lower
and upper bounds in the character comparison model
match, at O(n log 0).

The interesting case occurs when the alphabet con-
sists of integers. If we insist that the edges at each
node be sorted, then integer sorting is still a lower
bound, and we can assume that input characters have
been sorted. For some integer alphabets, where no
linear time sorting algorithm is known, sorting will
then be the bottleneck, while for some integer alpha-
bets, such as those in a polynomial range, sorting can
obviously be done in linear time. See [Tho971 for a de-
scription of the state of the art in integer sorting. If we
do not insist that the edges be sorted, then dynamic
hashing can be used to speed up suffix tree construc-
tion. In this paper, we consider only deterministic
algorithms, and in the deterministic case, weakening
the sorting condition has not been shown to yield a
faster algorithm.

Once the characters are sorted, WE' can replace each
character by its rank in the sorted list. We then
get an equivalent integer alphabet in the range 1, n].

ger alphabet suffix tree construction without getting
This case seems to capture all of the difficulty o I inte-

'In this case, it is possible to give a "stronger"
lower bound. The Q(n log n) bound can be obtained
from element distinctness, even without assuming the
sorted output form.

137
0272-5428/97 $10.00 0 1997 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on January 25,2023 at 04:19:33 UTC from IEEE Xplore. Restrictions apply.

http://www

bogged down in the details of integer sorting. There
is no non-trivial lower bound for buildlng such trees,
while the best upper bound known is the straightfor-
ward O(n1ogn). Note that in [DK95], Delcher and
Kosaraju claimed a linear time algorithm for this prob-
lem, but this algorithm turned out to have a bug in i t ,
as they noted in [DK96], where they also posed closing
the log gap in the complexity of suffix tree construc-
tion for the linear alphabet case as an important and
difficult open problem.

In this paper, we solve this open problem and close
the gap by giving a linear time suffix tree algorithm
for integer alphabets in the range [l, n]. We do so by
introducing an algorithm that completely breaks with
the Weiner approach. Before outlining the algorithmic
approach, we give some preliminary definitions.
1.1 Preliminaries

Let S { l , . . . , n } n . The suffix tree TS of S is
the compacted trie2 of all the suffixes of Skr, where
Y { 1, . . . , n}. Throughout the paper, we will assume
that suffix trees are represented as follows. Leaf li
represents suffix S[i,n]. Given i , we can access li in
constant time. Each internal node v has a length L (v)
which is the sum of the edge lengths on the path from
the root to W. Then the string at v, denoted a(v) , is
S[i , i + L (v) - I] where li is any leaf below v. The
children of node v are stored in a list sorted by the
first character on the edge from v. See Figure 1.1 for
an example.

The following well-known lemma gives suffix trees
a nice structure.

Lemma 1.1 ([Wei73]) Let a E {1 ,..., n } and cy E
(1,. . . , n}*. Ifthere 2s a node v zn Ts such that a(.) =
a a , then there as a node w in Ts such that a (w) = a.

Given this lemma, we can define, for every node in
a suffix tree, the safiz link sl(v) = w, where U and w
are defined as in Lemma 1.1. Notice that sl(.) links
form a tree rooted at the root of Ts. The depth of any
node v in this SI(.) tree is then just L(v).

Let lcp(Cu, p) be the length of the longest common
prefix of two strings. Let lal, the length of string a ,
be m, for cu E E“. Let l c a (v , w) be the least com-
mon ancestor of two nodes in a tree. The property
of suffix trees most often exploited algorithmically is
the following relationship between 1cp in S and lca
in Ts.

Vu, w E Ts, Icp(a(v), a(w)) = Ia(lca(w, w))l.

A useful feature of this equality is that least common
ancestors can be computed in constant time after lin-
ear preprocessing [HT84]. Thus arbitrary substring
equality can be tested in constant time after a linear
preprocessing of a string, as long as the suffix tree can
be built in linear time.

’A compacted trie differs from a trie in that max-
imal branch-free paths are replaced by edges labeled
by the appropriate substring.

1.2 Algorithm Outline
As noted above, a suffix tree is the compacted trie

of the suffixes of a string. Our approach for finding
the suffix tree is to compute the compacted trie of
different subsets of the suffixes of a string and then
merge the trees. In particular, we will show how to
recursively compute the compacted trie of all suffixes
beginning at odd positions. We call this tree To and
note that it has n/2 leaves, and is therefore half the
size of Ts. From To we will show how to compute
T,, the compacted trie of suffixes beginning in even
positions. Character sorting will play a prominent r6le
in both these steps, and so this is the point where we
take advantage of the assumption that the alphabet
consists of small integers.

Finally, we must merge To and Te into the final tree.
This step is the crux of the matter. Notice that while
both To and T, have representations which are of size
O (n) , they implicitly share O(n’) characters in com-
mon. We must therefore exploit structural properties
of suffix trees to perform this step in O(n) time. This
step does not rely on sorting, and so it works on odd
and even trees over an arbitrary alphabet. While a
similar odd/even approach was taken in [FM96], the
algorithm in that paper relied heavily on randomiza-
tion and only works for binary alphabets. The main
result in that paper was to achieve a logarithmic time
and linear work suffix tree construction on a PRAM
for binary strings.

In Sections 2, 3, and 4, we present the three main
steps of the algorithm.

2 Building the Odd Tree
In this section, we show how to compute To, the

compacted trie of all suffixes of S beginning in odd
positions. Figure 2.2 gives the odd tree for our ex-
ample string. We first map pairs of characters into
single characters as follows. For i = 1 to n/2, form
pairs (S[2i - 11, S[2i]). Radix sort them in linear time,
remove duplicates, and compute the function S’[i] =
rank of (S[2i - 1],S[2i]) in the sorted list. S‘ can
be computed in linear time and is a string of length
n/2 over integer alphabet [l, n/2]. For our example,

.

138

S’ = 212343Y.
Now recursively compute Tsi, the suffix tree of S’.

See Figure 2.3 for Ts/ for our example string. No-
tice that anv odd suffix Sr2i - 11.. .S[nlY is a suffix

L A

S’[i] . . . S’[nj2]Y. So each ieaf li bf Ts, becomes L-1
of To. Any internal node of TsJ with length i becomes
an internal node of length To with length 2i. Call this
tree T’. So T’ only differs from Tsc in its labels.

T’ and To are quite similar. T’ contains all odd
suffixes of S but is not the compacted trie of these
suffixes. To see why, notice that all internal nodes of
T’ have even length, while two odd suffixes of S may
have a longest common prefix of odd length. Put an-
other way, if node U in Ts, has two children v and w so
that the first character on edge (U , v) is (a , b) and the
first character on edge (U , w) is (a , c) , for a , b , c E [1, n] ,
then the corresponding node U in T‘ would have two
children whose edges start with the same character,
and so T’ is not a trie at all.

Authorized licensed use limited to: The University of Utah. Downloaded on January 25,2023 at 04:19:33 UTC from IEEE Xplore. Restrictions apply.

b
kl

B M
Figure 1.1: Suffix t,ree of string S = 121112212221Y. Numbers in boxes represent which suffix ends at that leaf.
Numbers next to internal nodes represent the string length (L (.)) of that node.

So we must do 5 final patching of TI in which we
take, for all internal nodes U , all of U ' S children whose
edges start with each character and introduce ai new
node between U and these children. This can be done
very quickly since the edges coming from any node are
lexicographically sorted by their first two characters
(since we chose the alphabet for SI by the raink of
character pairs in such a lexicographic sorting). So
for each edge, we need only check if its first character
agrees with the first character of the proceeding edge,
and if so, make the minor adjustment. Finally, it may
be that the edges to all of U ' S children starts with the
same character, in which case U would end up with
only one child. If so, we delete U . This clearly takes
only constant timc per edge and constant timle per
node, and so linear time overall.

Lemma 2.1 If T(n) zs the tzme zt takes our algo rzthm
to buzld the sufix tree of a strzng S E (1,. . . n } " , then
To can be buzlt tn l"(n/2) + O(n).

We will show that we can get T, from To in linear
time, and that we tan merge To and T, in linear time.
This will establish the main claim, that we can build
a suffix tree in linear time.

We conclude that

3 Building the Even Tree
Suppose we are given an inorder traversal of the

leaves of a tree, and the depth of the lca of adjacent

leaves in this ordering. Then it is straightforward
exercise to reconstruct the tree in linear time. Simi-
larly, suppose we are given the lexicographic traversal
of the leaves of a compacted trie, which we call the
lex-orderzng, and the length of the longest common
prefix of adjacent leaves. Then we can reconstruct the
trie in linear time [FM96]. We derive these two pieces
of information for the even tree from the odd tree.

First, consider the lex-ordering. We must derive the
lexicographically sorted order of the even suffixes of S.
Notice that we have the lexicographic ordering of the
odd suffixes of S, given trivially by the lex-ordering
of the leaves of To. Also, notice that an even suffix
is a single character followed by an odd suffix. Thus,
we have a type of radix sort problem. We need only
stably sort the lex-ordered leaves of To, using the key
S[2i] for any odd suffix S[2i + 13. By the correctness
of radix sort [AHU74], the even suffixes are correctly
sorted. Therefore, we can get the lex-ordering of the
leaves of T, in linear time. The details of the whole
process are evident from the following example.

In our example string, we get the ordering
[3,1,5,7,11,9,13] for the leaves of To (See Figure 2.2).
We must therefore stably sort the follow tuples:
~ (~ , ~) 1 (~ 1 ~) 1 (~ 1 ~) , (~ , ~ ~) , (~ , ~) , (~ , ~ ~) 1 ~ To repeat,
the 1's and 2's placed in the tuples are the 2nd, 4th,
6th, loth, 8th and 12th characters of the string, which
are the characters preceding the 3rcl, 5th, 7th, l l t h ,
9th, and 13th suffixes. Notice that we do not include

139

Authorized licensed use limited to: The University of Utah. Downloaded on January 25,2023 at 04:19:33 UTC from IEEE Xplore. Restrictions apply.

n

" B a
Figure 2.2: Odd tree of string S = 121112212221Y

the 1 suffix since it is not preceded by any character.
Stably sorting by the first number yields the ordering

and yields [4 ,8,12,2,6,10] as the sorted order of the
even suffixes.

Now, given two leaves lzi, 12j of T,, we wish to deter-
mine Icp(lzi, I z j) . As noted above, we can preprocess
To in linear time so that we can get l c p information
about odd suffixes in constant time. Having done this,
we note that

[(I , 5) , (1 ,9) , (1,13), (2 ,3) , (2 ,7) , (2,11 I . Subtracting
one from the second index completes t h e computation

These operations yield the tree in Figure 3.4.

Lemma 3.1 Given S E (1,. . . ,T I } : and its odd tree
To, T, can be constructed in O(n) tame.

We conclude that

4 Merging the trees
In this section, we show how to merge T, and To

into Ts. This routine will run in linear time, thus
completing the suffix tree construction algorithm.

First, consider how one would merge T, and To if
they were uncompacted, so that each edge would be
labeled by a single character. The obvious procedure
is a coupled depth first search tour of the two trees.
That is, start by identifying the roots of both trees.
Now simultaneously take the edge whose label is 1 in
both trees, and recursively merge the two subtrees.
When the DFS merge of these two subtrees is done,
then we do the same for the edge whose label is 2, and
so on for all the edges incident on the root. At any
stage, if only one of the trees has an edge labeled i,

then we need not recurse on that subtree since there
is nothing to merge.

If we were merging uncompacted tries, then this
procedure would give an optimal and simple method
for doing so. Now consider just the first step of this
procedure on a compacted trie. We take the children
of the root whose first character is a 1 (or whatever
the first shared character is). Each of these edges rep-
resents a string of up to R(n) characters, and so we
cannot spend the time to see if the edges really agree
on all the characters. This would give an O(n2) time
algorithm for merging. Also, we must take care of de-
tails such as the fact that the edges we are merging
need not be of the same length, and so, when we merge
two edges, we must see if the shorter is a prefix of the
longer and break the longer edge at an appropriate
length.

Suppose we had an oracle for telling if two sub-
strings of 5' are equal. Then we could use it in our
coupled depth first search, in place of simply testing
character equality. Most of the difficulty in merging
the trees would be overcome. Note than even still,
such an oracle would be insufficient to solve the prob-
lem, at least by such a naive coupled-DFS algorithm,
since two edges might agree on some proper prefix,
and thus require partial merging. Furthermore, no
such oracle is available, so instead, we use a weak or-
acle which will never tell us that equal edges are dif-
ferent, but may sometimes tell us that unequal strings
are the same. Then we will overestimate the depth to
which the trees need to be merged, but we will never
merge too little. We will use such a weak oracle, and
then show how to unmerge the parts of the trees which
should not have been merged. This second part will
take advantage of the structural information of suffix
trees. In fact, this checking part will be so good that

140

Authorized licensed use limited to: The University of Utah. Downloaded on January 25,2023 at 04:19:33 UTC from IEEE Xplore. Restrictions apply.

" B B
Figure 2.3: Suffix tree of string S' = 212343Y

we can use any weak oracle. We will show that it suf-
fices to report that two edges are equal if they share
the same first character. To repeat, using this simple
oracle will allow us to merge properly the parts of To
and T, which need to be merged, but may merge two
subtrees which should not be merged. So we must
show how to unmerge the incorrectly merged parts.
See Figure 4.5 for the result of such a merger on our
example string.

Let M be the tree derived by a merge-DFS of To
and T, using our weak oracle, that is, M is obtained
by merging To and T, via a coupled DFS. If we decide
that two edges are equal, by testing if they start with
the same character, then we break the longer of'the
two edges and merge its prefix with the shorter of the
two edges. In this way, we only merge edges of equal
length. This procedure proceeds down to the leaves in
O(n) time.

Consider some node U . We wish to check if the
merge-DFS went too far in merging until U , or if the
tree structure is good as far down as U. We call a node
of M odd if it occurred in To and even if it occurred in
T,. Notice that a node, for example the root, can be
both odd and even. Recall that L (u) = Ir(u)I.. L(u)
can be looked up for each node in M by consulting To
or T,. Let 12i and l f j - 1 be descendants such that U is
their least common ancestor in M . Such an oddleven
pair must always exist for nodes in the merged re-
gion, even if the merged node is a leaf in the original
tree. Let i(u) be defined to be Icp(lni,lzj-1). Now
we check the status of U as follows.

Lemma 4.1 Let U: lzi and 12j-1 be as defined above.
U is properly mergeti in TS i f L (u) = L(u).

The alternative is 1;hat L(u) > L(u) , in which case
we have merged too far. So we must show how to
compute L(u) for all merged nodes U , and show what
to do when Lemma 4.1 is violated.

4.1 Computing

descendants of U. But
Recall that L(u) = Icp(lza, lzj-l), for some 12i, l z j

Let v = Ica(lZi+l, / ~ j) . Then we will show that k (u) =
1 + ,f,(v), as long as U is not the root of M . Define
d(u) = v where U and v are as above. Compute d for
every merged node in M , other than the root. See the
dotted edges in Figure 4.5.

Lemma 4.2 The function d deJines a tree on the
nodes of M . Further, L(u) = the depth of U in the
d tree.

Proof: In our definition of the d fiinction, there is
some non-determinism in terms of the choice of de-
scendants lzi and l z j - 1 . However, ib doesn't matter
which odd and even descendants we pick, since they
all have the same longest common prefix. This is be-
cause they all have the same least common ancestor in
Ts. Thus, k (u) has the same value, no matter which
odd and even descendant leaves we pick.

Now we show that if d(u) = U , then ,!(U) = 1 +
L(v) . This establishes both that the d pointers form
a tree, and, since i(Toot) = 0, that f(u) is the depth
of U in this tree. Since d U) =: U, there is some pair

But we know that lcp(lz i , lz j -~) = 1 t lcp(lzi+l,Zzj).
Finally, by definition L(u) = Icp(lzi, 1 z j - l) and, from
the observation above that all odd/,even descendant
pairs give the same L , L(v) = Icp(lza+l,lzj), thus

The depth of every node in the d tree is determined
in linear time by DFS. The only other step is the com-
putation of least common ancestors, which, as noted

l z i , 12 j -1 with lca U , such t 6 a t the lca of Zzt+l , l z j is U.

establishing the lemma.

14 1

Authorized licensed use limited to: The University of Utah. Downloaded on January 25,2023 at 04:19:33 UTC from IEEE Xplore. Restrictions apply.

k l B
Figure 3.4: Even tree of string S = 121112212221Y

above, requires linear processing and constant time
queries [HT84]. Notice, for example, that in Fig-
ure 4.5, L(lca(l5,lg)) = 3, i(lca(ls,l9)) = 2 and
i (lca(l9 , I l l))) = 2.

4.2 Using to Unmerge the Tree
We now show how to use L to partially unmerge To

and T, within M . We can either completely unmerge a
node U or partially unmerge it. Let p (u) be the parent
of U in the original tree (T, or To). Let p'(u) be the
parent of U in M . Completely unmerging a node U
means setting $ (U) = p(u) , that is, reseting the par-
ent of U to be its original parent in the unmerged tree.
If Lemma 4.1 is violated, so that L(u) > i (u) , then a
complete unmerge is not always the correct thing to
do. Consider, for example, Figure 4.5. It would be
incorrect to completely unmerge node lca(l5, l g) . In-
stead we need to introduce a node which is the parent
of /5 and /s and set its string length to 3, its depth in
the d tree. This is a partial unmerged. Both types of
unmerges are handled by the following procedure.

Define a node U to be a border node if L(u) < L(u) ,
but & ' (U)) = L(p'(u)). Notice that the set of border
nodes form an anti-chain in M . We can easily find all
the border nodes in linear time. Now, for each border
node U , we perform the following operations. Let T,"
be the odd tree below U and let T," be the even tree
below U in M . No node in T," or T," should be merged,
so unmerge them all by reseting, for each such node
w, p'(v) = p(w). The remaining question is what node
to hang T," and T," off of. But the set of border nodes
are exactly those nodes at which we need a partial
unmerge. These are handled, for each border node U ,
as follows

1. Create a new node U' and make it a child of p'(u).

3. Hang T," and T," off of U'. Order the children of
U' lexicographically.

This implements the partial unmerge case described
above.

When this procedure is completed for all border
nodes, the tree will be correct, since Lemma 4.1 will
be satisfied for every node. The total running time
is linear. We conclude that:

Theorem 4.3 Given a string S E (1 , . . . ,n}", the
sufix tree Ts of S can be deterministically constructed
in O(n) tame and space.

Proof: By Lemmas 2.1 and 3.1, and the discussion
of this section. Note finally that the children of all
nodes are sorted by their first character. Thus the
tree produced is properly sorted, as required by the
recursion.

Acknowledgements
Many thanks to Paolo Ferragina, Raffaele Gian-

carlo, and S. Muthukrishnan for helpful comments.

References
[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman.

The Design and Analysis of Computer Al-
gorit hms. Addison-Wesley, 1974.

142

Authorized licensed use limited to: The University of Utah. Downloaded on January 25,2023 at 04:19:33 UTC from IEEE Xplore. Restrictions apply.

Figure 4.5: “Merging” even and odd trees of string S = 121112212221Y yields this tree. The dashed edges are
edges which have heen merged too far. The dotted lines are the d(.) tree described below.

[CS85]

[DK95]

[DK96]

[FM96]

[HT84]

M. T . Chen and J. Seiferas. Efficient
and elegant subword tree construction. In
A. Apostolic0 and Z. Galil, editors, Combi-
natorial Algorithms on Words, chapter 12,
pages 9‘7-107. NATO AS1 Series F: Com-
puter anld System Sciences, 1985.

A. De1c:her and S. Kosaraju. Large-scale
assembby of dna strings and space-efficient
construction of suffix trees. Proc. of the 27th
Ann. ACM Symp. on Theory of Computing,
1995.

A. Delcher and S. Kosaraju. Large-scale
assembly of dna strings and space-efficient
construction of suffix trees (corrections).
Proc. of the 28th Ann. ACM Symp. on The-
ory of Computing, 1996.

M. Farach and S. Muthukrishnan. Optimal
logarithmic time randomized suffix tree con-
struction. Proc. of 23rd International Col-
loquium on Automata Languages and Pro-
gramming, 1996.

D. Hard and R.E. Tarjan. Fast algo-
rithms lor finding nearest common ances-
tors. SIAM Journal on Computing, 13:338-
355, 1984.

[Kos94]

[McC76]

[Tho971

[Wei73]

S. Kosaraju. Real-time suffix tree construc-
tion. Proc. of the 26th Ann. ACMSymp. on
Theory of Computing, 1904.

E. M. McCreiPht. A mace-economical suffix
tree construccon algdrithm. Journal of the
ACM, 23:262-272, 1976.

Mikkel Thorup. Faster deterministic sorting
and priority queues in linear space. Techni-
cal Report MPI-1-97-1-016, Max Plank In-
stitute fur Informatik, 19!37.

P. Weiner. Linear pattern matching al-
gorithm. Proc. 14 IEEE Symposium on
Switching and Automata Theory, pages 1-
11, 1973.

143

Authorized licensed use limited to: The University of Utah. Downloaded on January 25,2023 at 04:19:33 UTC from IEEE Xplore. Restrictions apply.

