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Abstract

Minwise hashing is a standard procedure in the context of search, for efficiently estimating set similari-
ties in massive binary data such as text. Recently, the method of b-bit minwise hashing has been applied
to large-scale linear learning (e.g., linear SVM or logistic regression) and sublinear time near-neighbor
search. The major drawback of minwise hashing is the expensive preprocessing cost, as the method re-
quires applying (e.g.,)k = 200 to 500 permutations on the data. The testing time can also be expensive
if a new data point (e.g., a new document or image) has not beenprocessed, which might be a significant
issue in user-facing applications. While it is true that thepreprocessing step can be parallelized, it comes
at the cost of additional hardware & implementation and is not an energy-efficient solution.

We develop a very simple solution based onone permutation hashing. Conceptually, given a mas-
sive binary data matrix, we permute the columns only once anddivide the permuted columns evenly
into k bins; and we simply store, for each data vector, the smallestnonzero location in each bin. The
interesting probability analysis (which is validated by experiments) reveals that our one permutation
scheme should perform very similarly to the original (k-permutation) minwise hashing. In fact, the one
permutation scheme can be even slightly more accurate, due to the “sample-without-replacement” effect.

Our experiments with training linear SVM and logistic regression on thewebspam dataset demonstrate
that this one permutation hashing scheme can achieve the same (or even slightly better) accuracies com-
pared to the originalk-permutation scheme. To test the robustness of our method, we also experiment
with the smallnews20 dataset which is very sparse and has merely on average 500 nonzeros in each data
vector. Interestingly, our one permutation scheme noticeably outperforms thek-permutation scheme
whenk is not too small on thenews20 dataset. In summary, our method can achieve at least the same
accuracy as the originalk-permutation scheme, at merely1/k of the original preprocessing cost.

1 Introduction

Minwise hashing [4, 3] is a standard technique for efficiently computing set similarities, especially in the
context of search. Recently,b-bit minwise hashing [17], which stores only the lowestb bits of each hashed
value, has been applied to sublinear time near neighbor search [21] and linear learning (linear SVM and
logistic regression) [18], on large-scale high-dimensional binary data (e.g., text), which are common in
practice. The major drawback of minwise hashing andb-bit minwise hashing is that they require an expen-
sive preprocessing step, by conductingk (e.g., 200 to 500) permutations on the entire dataset.

1.1 Massive High-Dimensional Binary Data

In the context of search, text data are often processed to be binary in extremely high dimensions. A standard
procedure is to represent documents (e.g., Web pages) usingw-shingles (i.e.,w contiguous words), where
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w ≥ 5 in several studies [4, 8]. This means the size of the dictionary needs to be substantially increased,
from (e.g.,)105 common English words to105w “super-words”. In current practice, it seems sufficient to
set the total dimensionality to beD = 264, for convenience. Text data generated byw-shingles are often
treated as binary. In fact, forw ≥ 3, it is expected that most of thew-shingles will occur at most one time in
a document. Also, note that the idea of shingling can be naturally extended to images in Computer Vision,
either at the pixel level (for simple aligned images) or at the Vision feature level [22].

In machine learning practice, the use of extremely high-dimensional data has become common. For
example, [23] discusses training datasets with (on average) n = 1011 items andD = 109 distinct features.
[24] experimented with a dataset of potentiallyD = 16 trillion (1.6 × 1013) unique features.

1.2 Minwise Hashing

Minwise hashing is mainly designed for binary data. A binary(0/1) data vector can be equivalently viewed
as a set (locations of the nonzeros). Consider setsSi ⊆ Ω = {0, 1, 2, ...,D − 1}, whereD, the size of the
space, is often set to beD = 264 in industrial applications. The similarity between two sets S1 andS2 is
commonly measured by theresemblance, which is a normalized version of the inner product:

R =
|S1 ∩ S2|
|S1 ∪ S2|

=
a

f1 + f2 − a
, wheref1 = |S1|, f2 = |S2|, a = |S1 ∩ S2| (1)

For large-scale applications, the cost of computing resemblances exactly can be prohibitive in time,
space, and energy-consumption. The minwise hashing methodwas proposed for efficient computing resem-
blances. The method requires applyingk independent random permutations on the data.

Denoteπ a random permutation:π : Ω → Ω. The hashed values are the two minimums of the sets after
applying the permutationπ onS1 andS2. The probability at which the two hashed values are equal is

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|
|S1 ∪ S2|

= R (2)

One can then estimateR from k independent permutations,π1, ...,πk:

R̂M =
1

k

k
∑

j=1

1{min(πj(S1)) = min(πj(S2))}, Var
(

R̂M

)

=
1

k
R(1−R) (3)

Because the indicator function1{min(πj(S1)) = min(πj(S2))} can be written as an inner product
between two binary vectors (each having only one 1) inD dimensions [18]:

1{min(πj(S1)) = min(πj(S2))} =
D−1
∑

i=0

1{min(πj(S1)) = i} × 1{min(πj(S2)) = i} (4)

we know that minwise hashing can be potentially used for training linear SVM and logistic regression on
high-dimensional binary data by converting the permuted data into a new data matrix inD × k dimensions.
This of course would not be realistic ifD = 264.

The method ofb-bit minwise hashing [17] provides a simple solution by storing only the lowestb bits
of each hashed data. This way, the dimensionality of the expanded data matrix from the hashed data would
be only2b × k as opposed to264 × k. [18] applied this idea to large-scale learning on thewebspam dataset
(with about 16 million features) and demonstrated that using b = 8 andk = 200 to 500 could achieve very
similar accuracies as using the original data. More recently, [21] directly used the bits generated byb-bit
minwise hashing for building hash tables to achieve sublinear time near neighbor search. We will briefly
review these two important applications in Sec. 2. Note thatboth applications require the hashed data to be
“aligned” in that only the hashed data generated by the same permutation are interacted. For example, when
computing the inner products, we simply concatenate the results fromk permutations.
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1.3 The Cost of Preprocessing and Testing

Clearly, the preprocessing step of minwise hashing can be very costly. For example, in our experiments,
loading thewebspam dataset (350,000 samples, about 16 million features, and about 24GB in Libsvm/svmlight
format) used in [18] took about1000 seconds when the data are stored in Libsvm/svmlight (text) format,
and took about150 seconds after we converted the data into binary. In contrast, the preprocessing cost for
k = 500 was about 6000 seconds (which is≫ 150). Note that, compared to industrial applications [23], the
webspam dataset is very small. For larger datasets, the preprocessing step will be much more expensive.

In the testing phrase (in search or learning), if a new data point (e.g., a new document or a new image)
has not processed, then the cost will be expensive if it includes the preprocessing cost. This may raise sig-
nificant issues in user-facing applications where the testing efficiency is crucial.

Intuitively, the standard practice of minwise hashing ought to be very “wasteful” in that all the nonzero
elements in one set are scanned (permuted) but only the smallest one will be used.

1.4 Our Proposal: One Permutation Hashing

As illustrated in Figure 1, the idea ofone permutation hashing is very simple. We view sets as 0/1 vectors
in D dimensions so that we can treat a collection of sets as a binary data matrix inD dimensions. After we
permute the columns (features) of the data matrix, we dividethe columns evenly intok parts (bins) and we
simply take, for each data vector, the smallest nonzero element in each bin.
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Figure 1: Fixed-length hashing scheme. ConsiderS1, S2, S3 ⊆ Ω = {0, 1, ..., 15} (i.e., D = 16). We
apply one permutationπ on the three sets and presentπ(S1), π(S2), andπ(S3) as binary (0/1) vectors,
whereπ(S1) = {2, 4, 7, 13}, π(S2) = {0, 6, 13}, andπ(S3) = {0, 1, 10, 12}. We divide the spaceΩ evenly
into k = 4 bins, select the smallest nonzero in each bin, andre-index the selected elements as three samples:
[2, 0, ∗, 1], [0, 2, ∗, 1], and[0, ∗, 2, 0]. For now, we use ‘*’ for empty bins, which occur rarely unless
the number of nonzeros is small compared tok.

In the example in Figure 1 (which concerns 3 sets), the sampleselected fromπ(S1) is [2, 4, ∗, 13], where
we use ’*’ to denote an empty bin, for the time being. Since only want to compare elements with the same
bin number (so that we can obtain an inner product), we can actually re-index the elements of each bin to
use the smallest possible representations. For example, for π(S1), after re-indexing, the sample[2, 4, ∗, 13]
becomes[2−4×0, 4−4×1, ∗, 13−4×3] = [2, 0, ∗, 1]. Similarly, forπ(S2), the original sample[0, 6, ∗, 13]
becomes[0, 6 − 4× 1, ∗, 13 − 4× 3] = [0, 2, ∗, 1], etc.

Note that, when there are no empty bins, similarity estimation is equivalent to computing an inner
product, which is crucial for taking advantage of the modernlinear learning algorithms [13, 19, 7, 11]. We
will show that empty bins occur rarely unless the total number of nonzeros for some set is small compared
to k, and we will present strategies on how to deal with empty binsshould they occur.
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1.5 Summary of the Advantages of One Permutation Hashing

• Reducingk (e.g., 500) permutations to just one permutation (or a few) is much more computationally
efficient. From the perspective of energy consumption, thisscheme is highly desirable, especially
considering that minwise hashing is deployed in the search industry.

• While it is true that the preprocessing can be parallelized,it comes at the cost of additional hardware
and software implementation.

• In the testing phase, if a new data point (e.g., a new documentor a new image) has to be first processed
with k permutations, then the testing performance may not meet thedemand in for example user-
facing applications such as search or interactive visual analytics.

• It should be much easier to implement the one permutation hashing than the originalk-permutation
scheme, from the perspective of random number generation. For example, if a dataset has one billion
features (D = 109), we can simply generate a “permutation vector” of lengthD = 109, the memory
cost of which (i.e., 4GB) is not significant. On the other hand, it would not be realistic to store a
“permutation matrix” of sizeD × k if D = 109 andk = 500; instead, one usually has to resort to
approximations such as using universal hashing [5] to approximate permutations. Universal hashing
often works well in practice although theoretically there are always worst cases. Of course, whenD =
264, we have to use universal hashing, but it is always much easier to generate just one permutation.

• One permutation hashing is a better matrix sparsification scheme than the originalk-permutation. In
terms of the original binary data matrix, the one permutation scheme simply makes many nonzero
entries be zero, without further “damaging” the original data matrix. With the originalk-permutation
scheme, we store, for each permutation and each row, only thefirst nonzero and make all the other
nonzero entries be zero; and then we have to concatenatek such data matrices. This will significantly
change the structure of the original data matrix. As a consequence, we expect that our one permutation
scheme will produce at least the same or even more accurate results, as later verified by experiments.

1.6 Related Work

One of the authors worked on another “one permutation” scheme namedConditional Random Sampling
(CRS) [14, 15] since 2005. Basically, CRS works by continuously taking the firstk nonzeros after applying
one permutation on the data, then it uses a simple “trick” to construct a random sample for each pair with
the effective sample size determined at the estimation stage. By taking the nonzeros continuously, however,
the samples are no longer “aligned” and hence we can not writethe estimator as an inner product in a unified
fashion. In comparison, our new one permutation scheme works by first breaking the columns evenly intok
bins and then taking the first nonzero in each bin, so that the hashed data can be nicely aligned.

Interestingly, in the original “minwise hashing” paper [4](we use quotes because the scheme was not
called “minwise hashing” at that time), only one permutation was used and a sample was the firstk nonzeros
after the permutation. After the authors of [4] realized that the estimators could not be written as an inner
product and hence the scheme was not suitable for many applications such as sublinear time near neighbor
search using hash tables, they quickly moved to thek-permutation minwise hashing scheme [3]. In the
context of large-scale linear learning, the importance of having estimators which are inner products should
become more obvious after [18] introduced the idea of using (b-bit) minwise hashing for linear learning.

We are also inspired by the work on “very sparse random projections” [16]. The regular random projec-
tion method also has the expensive preprocessing cost as it needsk projections. The work of [16] showed
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that one can substantially reduce the preprocessing cost byusing an extremely sparse projection matrix. The
preprocessing cost of “very sparse random projections” canbe as small as merely doing one projection.1

Figure 1 presents the “fixed-length” scheme, while in Sec. 7 we will also develop a “variable-length”
scheme. Two schemes are more or less equivalent, although webelieve the fixed-length scheme is more
convenient to implement (and it is slightly more accurate).The variable-length hashing scheme is to some
extent related to the Count-Min (CM) sketch [6] and the Vowpal Wabbit (VW) [20, 24] hashing algorithms.

2 Applications of Minwise Hashing on Efficient Search and Learning

In this section, we will briefly review two important applications of the original (k-permutation) minwise
hashing: (i) sublinear time near neighbor search [21], and (ii) large-scale linear learning [18].

2.1 Sublinear Time Near Neighbor Search

The task ofnear neighbor search is to identify a set of data points which are “most similar” toa query data
point. Efficient algorithms for near neighbor search have numerous applications in the context of search,
databases, machine learning, recommending systems, computer vision, etc. It has been an active research
topic since the early days of modern computing (e.g, [9]).

In current practice, methods for approximate near neighborsearch often fall into the general framework
of Locality Sensitive Hashing (LSH) [12, 1]. The performance of LSH solely depends on its underlying
implementation. The idea in [21] is to directly use the bits generated by (b-bit) minwise hashing to construct
hash tables, which allow us to search near neighbors in sublinear time (i.e., no need to scan all data points).

Specifically, we hash the data points usingk random permutations and store each hash value usingb bits
(e.g.,b ≤ 4). For each data point, we concatenate the resultantB = b × k bits as asignature. The size of
the space is2B = 2b×k, which is not too large for smallb andk (e.g.,bk = 16). This way, we create a table
of 2B buckets, numbered from 0 to2B − 1; and each bucket stores the pointers of the data points whose
signatures match the bucket number. In the testing phrase, we apply the samek permutations to a query data
point to generate abk-bit signature and only search data points in the corresponding bucket. Since using
only one hash table will likely miss many true near neighbors, as a remedy, we generate (using independent
random permutations)L hash tables. The query result is the union of the data points retrieved inL tables.

00  10

11  10
11  11

00  00
00  01

Index Data Points

11  01

(empty)

6, 110, 143
 3, 38, 217

 5, 14, 206
31, 74, 153
 21, 142, 329

00  10

11  10
11  11

00  00
00  01

Index Data Points

11  01

6 ,15, 26, 79
33, 489

7, 49, 208

3, 14, 32, 97
11, 25, 99
8, 159, 331

Figure 2: An example of hash tables, withb = 2, k = 2, andL = 2.

Figure 2 provides an example withb = 2 bits,k = 2 permutations, andL = 2 tables. The size of each
hash table is24. Givenn data points, we applyk = 2 permutations and storeb = 2 bits of each hashed
value to generaten (4-bit) signaturesL times. Consider data point 6. For Table 1 (left panel of Figure 2),
the lowestb-bits of its two hashed values are 00 and 00 and thus its signature is 0000 in binary; hence we

1Seehttp://www.stanford.edu/group/mmds/slides2012/s-pli.pdf for the experimental results on cluster-
ing/classification/regression using very sparse random projections [16].
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place a pointer to data point 6 in bucket number 0. For Table 2 (right panel of Figure 2), we apply another
k = 2 permutations. This time, the signature of data point 6 becomes 1111 in binary and hence we place it
in the last bucket. Suppose in the testing phrase, the two (4-bit) signatures of a new data point are 0000 and
1111, respectively. We then only search for the near neighbors in the set{6, 15, 26, 79, 110, 143}, which is
much smaller than the set ofn data points.

The experiments in [21] confirmed that this very simple strategy performed well.

2.2 Large-Scale Linear Learning

The recent development of highly efficient linear learning algorithms (such as linear SVM and logistic
regression) is a major breakthrough in machine learning. Popular software packages include SVMperf [13],
Pegasos [19], Bottou’s SGD SVM [2], and LIBLINEAR [7].

Given a dataset{(xi, yi)}ni=1, xi ∈ R
D, yi ∈ {−1, 1}, theL2-regularized logistic regression solves the

following optimization problem:

min
w

1

2
w

T
w + C

n
∑

i=1

log
(

1 + e−yiw
T
xi

)

, (5)

whereC > 0 is the regularization parameter. TheL2-regularized linear SVM solves a similar problem:

min
w

1

2
w

T
w + C

n
∑

i=1

max
{

1− yiw
T
xi, 0

}

, (6)

In their approach [18], they applyk random permutations on each (binary) feature vectorxi and store
the lowestb bits of each hashed value, to obtain a new dataset which can bestored using merelynbk bits.
At run-time, each new data point has to be expanded into a2b × k-length vector with exactlyk 1’s.

To illustrate this simple procedure, [18] provided a toy example withk = 3 permutations. Suppose for
one data vector, the hashed values are{12013, 25964, 20191}, whose binary digits are respectively
{010111011101101, 110010101101100, 100111011011111}. Usingb = 2 bits, the binary digits are stored
as{01, 00, 11} (which corresponds to{1, 0, 3} in decimals). At run-time, the (b-bit) hashed data are ex-
panded into a vector of length2bk = 12, to be{0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0}, which will be the new
feature vector fed to a solver such as LIBLINEAR. The procedure for this feature vector is summarized as
follows:

Original hashed values(k = 3) : 12013 25964 20191
Original binary representations: 010111011101101 110010101101100 100111011011111
Lowestb = 2 binary digits: 01 00 11
Expanded2b = 4 binary digits : 0010 0001 1000
New feature vector fed to a solver: [0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0] × 1√

k

The same procedure (with the samek = 3 permutations) is then applied to alln feature vectors. Very
interestingly, we notice that the all-zero vector (0000 in this example) is never used when expanding the
data. In our one permutation hashing scheme, we will actually take advantage of the all-zero vector to
conveniently encode empty bins, a strategy which we will later refer to as the “zero coding” strategy.

The experiments in [18] confirmed that this simple procedureperformed well.

Clearly, in both applications (near neighbor search and linear learning), the hashed data have to be
“aligned” in that only the hashed data generated from the same permutation are compared with each other.
With our one permutation scheme as presented in Figure 1, thehashed data are indeed aligned according to
the bin numbers. The only caveat is that we need a practical strategy to deal with empty bins, although they
occur rarely unless the number of nonzeros in one data vectoris small compared tok, the number of bins.
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3 Theoretical Analysis of the Fixed-Length One PermutationScheme

While the one permutation hashing scheme, as demonstrated in Figure 1, is intuitive, we present in this
section some interesting probability analysis to provide arigorous theoretical foundation for this method.
Without loss of generality, we consider two setsS1 andS2. We first introduce two definitions, for the number
of “jointly empty bins” and the number of “matched bins,” respectively:

Nemp =

k
∑

j=1

Iemp,j, Nmat =

k
∑

j=1

Imat,j (7)

whereIemp,j andImat,j are defined for thej-th bin, as

Iemp,j =

{

1 if both π(S1) andπ(S2) are empty in thej-th bin
0 otherwise

(8)

Imat,j =







1 if both π(S1) andπ(S1) are not empty and the smallest element ofπ(S1)
matches the smallest element ofπ(S2), in thej-th bin

0 otherwise
(9)

Later we will also useI(1)emp,j (or I(2)emp,j) to indicate whetherπ(S1) (or π(S2)) is empty in thej-th bin.

3.1 Expectation, Variance, and Distribution of the Number of Jointly Empty Bins

Recall the notation:f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|. We also usef = |S1 ∪ S2| = f1 + f2 − a.

Lemma 1 Assume D
(

1− 1
k

)

≥ f = f1 + f2 − a,

E (Nemp)

k
=

f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
≤
(

1− 1

k

)f

(10)

Assume D
(

1− 2
k

)

≥ f = f1 + f2 − a,

V ar (Nemp)

k2
=
1

k

(

E(Nemp)

k

)(

1− E(Nemp)

k

)

(11)

−
(

1− 1

k

)









f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





2

−
f−1
∏

j=0

D
(

1− 2
k

)

− j

D − j





<
1

k

(

E(Nemp)

k

)(

1− E(Nemp)

k

)

(12)

Proof: See Appendix A. �

The inequality (12) says that the variance ofNemp

k is smaller than its “binomial analog.”

In practical scenarios, the data are often sparse, i.e.,f = f1 + f2 − a ≪ D. In this case, Lemma 2
illustrates that in (10) the upper bound

(

1− 1
k

)f
is a good approximation to the true value ofE(Nemp)

k . Since
(

1− 1
k

)f ≈ e−f/k, we know that the chance of empty bins is small whenf ≫ k. For example, iff/k = 5

then
(

1− 1
k

)f ≈ 0.0067; if f/k = 1, then
(

1− 1
k

)f ≈ 0.3679. For practical applications, we would expect
thatf ≫ k (for most data pairs), otherwise hashing probably would notbe too useful anyway. This is why
we do not expect empty bins will significantly impact (if at all) the performance in practical settings.
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Lemma 2 Assume D
(

1− 1
k

)

≥ f = f1 + f2 − a.

E (Nemp)

k
=

(

1− 1

k

)f

exp





−D log D+1
D−f+1 + f

(

1− 1
2(D−f+1)

)

k − 1
+ ...



 (13)

Under the reasonable assumption that the data are sparse, i.e., f1 + f2 − a = f ≪ D, we obtain

E (Nemp)

k
=

(

1− 1

k

)f (

1−O

(

f2

kD

))

(14)

V ar (Nemp)

k2
=
1

k

(

1− 1

k

)f
(

1−
(

1− 1

k

)f
)

(15)

−
(

1− 1

k

)f+1
(

(

1− 1

k

)f

−
(

1− 1

k − 1

)f
)

+O

(

f2

kD

)

Proof: See Appendix B. �

In addition to its mean and variance, we can also write down the distribution ofNemp.

Lemma 3

Pr (Nemp = j) =

k−j
∑

s=0

(−1)s
k!

j!s!(k − j − s)!

f−1
∏

t=0

D
(

1− j+s
k

)

− t

D − t
(16)

Proof: See Appendix C. �

BecauseE (Nemp) =
∑k−1

j=0 jPr (Nemp = j), this yields an interesting combinatorial identity:

k

f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
=

k−1
∑

j=0

j

k−j
∑

s=0

(−1)s
k!

j!s!(k − j − s)!

f−1
∏

t=0

D
(

1− j+s
k

)

− t

D − t
(17)

3.2 Expectation and Variance of the Number of Matched Bins

Lemma 4 Assume D
(

1− 1
k

)

≥ f = f1 + f2 − a.

E (Nmat)

k
= R

(

1− E (Nemp)

k

)

= R



1−
f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j



 (18)

Assume D
(

1− 2
k

)

≥ f = f1 + f2 − a.

V ar(Nmat)

k2
=
1

k

(

E(Nmat)

k

)(

1− E(Nmat)

k

)

(19)

+

(

1− 1

k

)

R
a− 1

f − 1



1− 2

f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
+

f−1
∏

j=0

D
(

1− 2
k

)

− j

D − j





−
(

1− 1

k

)

R2



1−
f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





2

<
1

k

(

E(Nmat)

k

)(

1− E(Nmat)

k

)

(20)

Proof: See Appendix D. �
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3.3 Covariance ofNmat and Nemp

Intuitively, Nmat andNemp should be negatively correlated, as confirmed by the following Lemma:

Lemma 5 Assume D
(

1− 2
k

)

≥ f = f1 + f2 − a.

Cov (Nmat, Nemp)

k2
=R





f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j









f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
−

f−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j





− 1

k
R



1−
f−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j









f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j



 (21)

and

Cov (Nmat, Nemp) ≤ 0 (22)

Proof: See Appendix E. �

3.4 An Unbiased Estimator ofR and the Variance

Lemma 6 shows the following estimator̂Rmat of the resemblance is unbiased:

Lemma 6

R̂mat =
Nmat

k −Nemp
, E

(

R̂mat

)

= R (23)

V ar
(

R̂mat

)

= R(1−R)

(

E

(

1

k −Nemp

)(

1 +
1

f − 1

)

− 1

f − 1

)

(24)

E

(

1

k −Nemp

)

=
k−1
∑

j=0

Pr (Nemp = j)

k − j
≥ 1

k − E(Nemp)
(25)

Proof: See Appendix F. The right-hand side of the inequality (25) is actually a very good approximation
(see Figure 8). The exact expression for Pr (Nemp = j) is already derived in Lemma 3. �

The fact thatE
(

R̂mat

)

= R may seem surprising as in general ratio estimators are not unbiased. Note

thatk−Nemp > 0 always because we assume the original data vectors are not completely empty (all-zero).

As expected, whenk ≪ f = f1 + f2 − a, Nemp is essentially zero and henceV ar
(

R̂mat

)

≈ R(1−R)
k

. In

fact,V ar
(

R̂mat

)

is somewhat smaller thanR(1−R)
k

, which can be seen from the approximation:

V ar
(

R̂mat

)

R(1−R)/k
≈ g(f ; k) =

1

1−
(

1− 1
k

)f

(

1 +
1

f − 1

)

− k

f − 1
(26)

Lemma 7

g(f ; k) ≤ 1 (27)

Proof: See Appendix G. �

It is probably not surprising that our one permutation scheme may (slightly) outperform the original
k-permutation scheme (at merely1/k of its preprocessing cost), because one permutation hashing can be
viewed as a “sample-without-replacement” scheme.
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3.5 Experiments for Validating the Theoretical Results

This set of experiments is for validating the theoretical results. The Web crawl dataset (in Table 1) consists of
15 (essentially randomly selected) pairs of word vectors (in D = 216 dimensions) of a range of similarities
and sparsities. For each word vector, thej-th element is whether the word appeared in thej-th Web page.

Table 1: 15 pairs of English words. For example, “RIGHTS” and“RESERVED” correspond to the two sets
of document IDs which contained word “RIGHTS” and word “RESERVED” respectively.

Word 1 Word 2 f1 f2 f = f1 + f2 − a R

RIGHTS RESERVED 12234 11272 12526 0.877
OF AND 37339 36289 41572 0.771
THIS HAVE 27695 17522 31647 0.429
ALL MORE 26668 17909 31638 0.409
CONTACT INFORMATION 16836 16339 24974 0.328
MAY ONLY 12067 11006 17953 0.285
CREDIT CARD 2999 2697 4433 0.285
SEARCH WEB 1402 12718 21770 0.229
RESEARCH UNIVERSITY 4353 4241 7017 0.225
FREE USE 12406 11744 19782 0.221
TOP BUSINESS 9151 8284 14992 0.163
BOOK TRAVEL 5153 4608 8542 0.143
TIME JOB 12386 3263 13874 0.128
REVIEW PAPER 3197 1944 4769 0.078
A TEST 39063 2278 2060 0.052

We varyk from 23 to 215. Althoughk = 215 is probably way too large in practice, we use it for the
purpose of thorough validations. Figures 3 to 8 present the empirical results based on105 repetitions.

3.5.1 E(Nemp) and V ar(Nemp)

Figure 3 and Figure 4 respectively verifyE(Nemp) andV ar(Nemp) as derived in Lemma 1. Clearly, the
theoretical curves overlap the empirical curves.

Note thatNemp is essentially 0 whenk is not large. Roughly whenk/f > 1/5, the number of empty

bins becomes noticeable, which is expected becauseE(Nemp)/k ≈
(

1− 1
k

)f ≈ e−f/k ande−5 = 0.0067.
Practically speaking, as we often use minwise hashing to substantially reduce the number of nonzeros in
massive datasets, we would expect that usuallyf ≫ k anyway. See Sec. 4 for more discussion about
strategies for dealing with empty bins.

3.5.2 E(Nmat) and V ar(Nmat)

Figure 5 and Figure 6 respectively verifyE(Nmat) andV ar(Nmat) as derived in Lemma 4. Again, the
theoretical curves match the empirical ones and the curves start to change shapes at the point where the
occurrences of empty bins are more noticeable.
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Figure 3: E(Nemp)/k. The empirical curves essentially overlap the theoreticalcurves as derived in
Lemma 1, i.e., (10). The occurrences of empty bins become noticeable only at relatively large sample
sizek.
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Figure 4: V ar(Nemp)/k
2. The empirical curves essentially overlap the theoreticalcurves as derived in

Lemma 1, i.e., (11).
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Figure 5: E(Nmat)/k. The empirical curves essentially overlap the theoreticalcurves as derived in
Lemma 4, i.e., (18).
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Figure 6: V ar(Nmat)/k
2. The empirical curves essentially overlap the theoreticalcurves as derived in

Lemma 4, i.e., (19).
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3.5.3 Cov(Nemp, Nmat)

To verify Lemma 5, Figure 7 presents the theoretical and empirical covariances ofNemp andNmat. Note
thatCov (Nemp, Nmat) ≤ 0 as shown in Lemma 5.
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Figure 7: Cov(Nemp, Nmat)/k
2. The empirical curves essentially overlap the theoreticalcurves as de-

rived in Lemma 5, i.e., (21). The experimental results also confirm that the covariance is non-positive as
theoretically shown in Lemma 5.

3.5.4 E(R̂mat) and V ar(R̂mat)

Finally, Figure 8 plots the empirical MSEs (MSE = bias2 + variance) and the theoretical variances (24),

where the termE
(

1
k−Nemp

)

is approximated by 1
k−E(Nemp)

as in (25).

The experimental results confirm Lemma 6: (i) the estimatorR̂mat is unbiased; (ii) the variance formula
(24) and the approximation (25) are accurate; (iii) the variance ofR̂mat is somewhat smaller thanR(1 −
R)/k, which is the variance of the originalk-permutation minwise hashing, due to the “sample-without-
replacement” effect.

Remark: The empirical results presented in Figures 3 to 8 have clearly validated the theoretical results
for our one permutation hashing scheme. Note that we did not add the empirical results of the original
k-permutation minwise hashing scheme because they would simply overlap the theoretical curves. The fact
that the originalk-permutation scheme provides the unbiased estimate ofR with varianceR(1−R)

k has been
well-validated in prior literature, for example [17].
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Figure 8: MSE(R̂mat), to verify the theoretical results of Lemma 6. Note that the theoretical variance
curves use the approximation (25), for convenience. The experimental results confirm that: (i) the estimator
R̂mat is unbiased, (ii) the variance formula (24) and the approximation (25) are accurate; (iii) the variance
of R̂mat is somewhat smaller thanR(1−R)/k, the variance of the originalk-permutation minwise hashing.

4 Strategies for Dealing with Empty Bins

In general, we expect that empty bins should not occur often becauseE(Nemp)/k ≈ e−f/k, which is very
close to zero iff/k > 5. (Recallf = |S1 ∪ S2|.) If the goal of using minwise hashing is for data reduction,
i.e., reducing the number of nonzeros, then we would expect thatf ≫ k anyway.

Nevertheless, in applications where we need the estimatorsto be inner products, we need strategies to
deal with empty bins in case they occur. Fortunately, we realize a (in retrospect) simple strategy which can
be very nicely integrated with linear learning algorithms and performs very well.

0 2000 4000 6000 8000 10000
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4
x 10
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Webspam

Figure 9: Histogram of the numbers of nonzeros in
thewebspam dataset (350,000 samples).

Figure 9 plots the histogram of the numbers
of nonzeros in thewebspam dataset, which has
350,000 samples. The average number of nonzeros
is about 4000 which should be much larger than the
k (e.g., 200 to 500) for the hashing procedure. On
the other hand, about10% (or 2.8%) of the samples
have< 500 (or < 200) nonzeros. Thus, we must
deal with empty bins if we do not want to exclude
those data points. For example, iff = k = 500,
thenNemp ≈ e−f/k = 0.3679, which is not small.

The first (obvious) idea israndom coding. That is, we simply replace an empty bin (i.e., “*” as in
Figure 1) with a random number. In terms of the original unbiased estimator̂Rmat = Nmat

k−Nemp
, the ran-

dom coding scheme will almost not change the numeratorNmat. The drawback of random coding is that the
denominator will effectively becomek. Of course, in most practical scenarios, we expectNemp ≈ 0 anyway.
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The strategy we recommend for linear learning iszero coding, which is tightly coupled with the strategy
of hashed data expansion [18] as reviewed in Sec. 2.2. More details will be elaborated in Sec. 4.2. Basically,
we can encode “*” as “zero” in the expanded space, which meansNmat will remain the same (after taking the
inner product in the expanded space). A very nice property ofthis strategy is that it issparsity-preserving.
This strategy essentially corresponds to the following modified estimator:

R̂
(0)
mat =

Nmat
√

k −N
(1)
emp

√

k −N
(2)
emp

(28)

whereN (1)
emp =

∑k
j=1 I

(1)
emp,j andN (2)

emp =
∑k

j=1 I
(2)
emp,j are the numbers of empty bins inπ(S1) andπ(S2),

respectively. This modified estimator actually makes a lot of sense, after some careful thinking.
Basically, since each data vector is processed and coded separately, we actually do not knowNemp (the

number ofjointly empty bins) until we see bothπ(S1) andπ(S2). In other words, we can not really com-

puteNemp if we want to use linear estimators. On the other hand,N
(1)
emp andN (2)

emp are always available.

In fact, the use of
√

k −N
(1)
emp

√

k −N
(2)
emp in the denominator corresponds to the normalizing step which

is usually needed before feeding the data to a solver. This point will probably become more clear in Sec. 4.2.

WhenN (1)
emp = N

(2)
emp = Nemp, (28) is equivalent to the original̂Rmat. When two original vectors are

very similar (e.g., largeR), N (1)
emp andN (2)

emp will be close toNemp. When two sets are highly unbalanced,
using (28) will likely overestimateR; however, in this case,Nmat will be so small that the absolute error
will not be large. In any case, we do not expect the existence of empty bins will significantly affect the
performance in practical settings.

4.1 Them-Permutation Scheme with1 < m ≪ k

In case some readers would like to further (significantly) reduce the chance of the occurrences of empty
bins, here we shall mention that one does not really have to strictly follow “one permutation,” since one can
always conductm permutations withk′ = k/m and concatenate the hashed data. Once the preprocessing is
no longer the bottleneck, it matters less whether we use 1 permutation or (e.g.,)m = 3 permutations. The
chance of having empty bins decreases exponentially with increasingm.

4.2 An Example of The “Zero Coding” Strategy for Linear Learn ing

Sec. 2.2 has already reviewed the data-expansion strategy used by [18] for integrating (b-bit) minwise hash-
ing with linear learning. We will adopt a similar strategy with modifications for considering empty bins.

We use a similar example as in Sec. 2.2. Suppose we apply our one permutation hashing scheme and
usek = 4 bins. For the first data vector, the hashed values are[12013, 25964, 20191, ∗] (i.e., the 4-th bin
is empty). Suppose again we useb = 2 bits. With the “zero coding” strategy, our procedure is summarized
as follows:

Original hashed values(k = 4) : 12013 25964 20191 ∗
Original binary representations: 010111011101101 110010101101100 100111011011111 ∗
Lowestb = 2 binary digits: 01 00 11 ∗
Expanded2b = 4 binary digits : 0010 0001 1000 0000

New feature vector fed to a solver:
1√
4− 1

× [0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0]
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We apply the same procedure to all feature vectors in the datamatrix to generate a new data matrix. The
normalization factor 1

√

k−N
(i)
emp

varies, depending on the number of empty bins in thei-th feature vector.

We believe zero coding is an ideal strategy for dealing with empty bins in the context of linear learning as
it is very convenient and produces accurate results (as we will show by experiments). If we use the “random
coding” strategy (i.e., replacing a “*” by a random number in[0, 2b−1]), we need to add artificial nonzeros
(in the expanded space) and the normalizing factor is always1√

k
(i.e., no longer “sparsity-preserving”).

We apply both the zero coding and random coding strategies onthe webspam dataset, as presented in
Sec. 5 Basically, both strategies produce similar results even whenk = 512, although the zero coding
strategy is slightly better. We also compare the results with the originalk-permutation scheme. On the
webspam dataset, our one permutation scheme achieves similar (or even slightly better) accuracies compared
to thek-permutation scheme.

To test the robustness of one permutation hashing, we also experiment with thenews20 dataset, which
has only 20,000 samples and 1,355,191 features, with merelyabout 500 nonzeros per feature vector on
average. We purposely letk be as large as4096. Interestingly, the experimental results show that the zero
coding strategy can perform extremely well. The test accuracies consistently improve ask increases. In
comparisons, the random coding strategy performs badly unlessk is small (e.g.,k ≤ 256).

On thenews20 dataset, our one permutation scheme actually outperforms the originalk-permutation
scheme, quite noticeably whenk is large. This should be due to the benefits from the “sample-without-
replacement” effect. One permutation hashing provides a good matrix sparsification scheme without “dam-
aging” the original data matrix too much.

5 Experimental Results on the Webspam Dataset

The webspam dataset has 350,000 samples and 16,609,143 features. Each feature vector has on average
about 4000 nonzeros; see Figure 9. Following [18], we use80% of samples for training and the remain-
ing 20% for testing. We conduct extensive experiments on linear SVMand logistic regression, using our
proposed one permutation hashing scheme withk ∈ {25, 26, 27, 28, 29} andb ∈ {1, 2, 4, 6, 8}. For conve-
nience, we useD = 224, which is divisible byk and is slightly larger than 16,609,143.

There is one regularization parameterC in linear SVM and logistic regression. Since our purpose is
to demonstrate the effectiveness of our proposed hashing scheme, we simply provide the results for a wide
range ofC values and assume that the best performance is achievable ifwe conduct cross-validations. This
way, interested readers may be able to easily reproduce our experiments.

5.1 One Permutation v.s. k-Permutation

Figure 10 presents the test accuracies for both linear SVM (upper panels) and logistic regression (bottom
panels). Clearly, whenk = 512 (or even 256) andb = 8, b-bit one permutation hashing achieves similar test
accuracies as using the original data. Also, compared to theoriginal k-permutation scheme as in [18], our
one permutation scheme achieves similar (or even very slightly better) accuracies.

5.2 Preprocessing Time and Training Time

The preprocessing cost for processing the data usingk = 512 independent permutations is about 6,000
seconds. In contrast, the processing cost for the proposed one permutation scheme is only1/k of the
original cost, i.e., about 10 seconds. Note thatwebspam is merely a small dataset compared to industrial
applications. We expect the (absolute) improvement will beeven more substantial in much larger datasets.
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Figure 10: Test accuracies of SVM (upper panels) and logistic regression (bottom panels), averaged over 50
repetitions. The accuracies of using the original data are plotted as dashed (red, if color is available) curves
with “diamond” markers.C is the regularization parameter. Compared with the original k-permutation
minwise hashing scheme (dashed and blue if color is available), the proposed one permutation hashing
scheme achieves very similar accuracies, or even slightly better accuracies whenk is large.

The prior work [18] already presented the training time using thek-permutation hashing scheme. With
one permutation hashing, the training time remains essentially the same (for the samek and b) on the
webspam dataset. Note that, with the zero coding strategy, the new data matrix generated by one permutation
hashing has potentially less nonzeros than the original minwise hashing scheme, due to the occurrences of
empty bins. This phenomenon in theory may bring additional advantages such as slightly reducing the
training time. Nevertheless, the most significant advantage of one permutation hashing lies in the dramatic
reduction of the preprocessing cost, which is what we focus on in this study.

5.3 Zero Coding v.s. Random Coding for Empty Bins

The experimental results as shown in Figure 10 are based on the “zero coding” strategy for dealing with
empty bins. Figure 11 plots the results for comparing zero coding with the random coding. Whenk is large,
zero coding is superior to random coding, although the differences remain small in this dataset. This is not
surprising, of course. Random coding adds artificial nonzeros to the new (expanded) data matrix, which
would not be desirable for learning algorithms.

Remark: The empirical results on thewebspam datasets are highly encouraging because they verify that
our proposed one permutation hashing scheme works as well as(or even slightly better than) the original
k-permutation scheme, at merely1/k of the original preprocessing cost. On the other hand, it would be
more interesting, from the perspective of testing the robustness of our algorithm, to conduct experiments on
a dataset where the empty bins will occur much more frequently.

6 Experimental Results on the News20 Dataset

The news20 dataset (with 20,000 samples and 1,355,191 features) is a very small dataset in not-too-high
dimensions. The average number of nonzeros per feature vector is about 500, which is also small. There-
fore, this is more like a contrived example and we use it just to verify that our one permutation scheme
(with the zero coding strategy) still works very well even when we letk be as large as 4096 (i.e., most of
the bins are empty). In fact, the one permutation schemes achieves noticeably better accuracies than the
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Figure 11: Test accuracies of SVM (upper panels) and logistic regression (bottom panels), averaged over 50
repetitions, for comparing the (recommended) zero coding strategy with the random coding strategy to deal
with empty bins. We can see that the differences only become noticeable atk = 512.

original k-permutation scheme. We believe this is because the one permutation scheme is “sample-without-
replacement” and provides a much better matrix sparsification strategy without “contaminating” the original
data matrix too much.

6.1 One Permutation v.s. k-Permutation

We experiment withk ∈ {23, 24, 25, 26, 27, 28, 29, 210, 211, 212} andb ∈ {1, 2, 4, 6, 8}, for both one permu-
tation scheme andk-permutation scheme. We use 10,000 samples for training andthe other 10,000 samples
for testing. For convenience, we letD = 221 (which is larger than 1,355,191).

Figure 12 and Figure 13 present the test accuracies for linear SVM and logistic regression, respectively.
Whenk is small (e.g.,k ≤ 64) both the one permutation scheme and the originalk-permutation scheme
perform similarly. For largerk values (especially ask ≥ 256), however, our one permutation scheme
noticeably outperforms thek-permutation scheme. Using the original data, the test accuracies are about
98%. Our one permutation scheme withk ≥ 512 andb = 8 essentially achieves the original test accuracies,
while thek-permutation scheme could only reach about97.5% even withk = 4096.
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Figure 12: Test accuracies of linear SVM averaged over 100 repetitions. The proposed one permutation
scheme noticeably outperforms the originalk-permutation scheme especially whenk is not small.
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Figure 13: Test accuracies of logistic regression averagedover 100 repetitions. The proposed one permuta-
tion scheme noticeably outperforms the originalk-permutation scheme especially whenk is not small.

6.2 Zero Coding v.s. Random Coding for Empty Bins

Figure 14 and Figure 15 plot the results for comparing two coding strategies to deal with empty bins,
respectively for linear SVM and logistic regression. Again, whenk is small (e.g.,k ≤ 64), both strategies
perform similarly. However, whenk is large, using the random coding scheme may be disastrous, which is
of course also expected. Whenk = 4096, most of the nonzero entries in the new expanded data matrix fed
to the solver are artificial, since the originalnews20 dataset has merely about500 nonzero on average.
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Figure 14: Test accuracies of linear SVM averaged over 100 repetitions, for comparing the (recommended)
zero coding strategy with the random coding strategy to dealwith empty bins. On this dataset, the perfor-
mance of the random coding strategy can be bad.

Remark: We should re-iterate that thenews20 dataset is more like a contrived example, merely for testing
the robustness of the one permutation scheme with the zero coding strategy. In more realistic industrial
applications, we expect that numbers of nonzeros in many datasets should be significantly higher, and hence
the performance differences between the one permutation scheme and thek-permutation scheme and the
differences between the two strategies for empty bins should be small.
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Figure 15: Test accuracies of logistic regression averagedover 100 repetitions, for comparing the zero
coding strategy (recommended) with the random coding strategy to deal with empty bins. On this dataset,
the performance of the random coding strategy can be bad.

7 The Variable Length One Permutation Hashing Scheme

While the fixed-length one permutation scheme we have presented and analyzed should be simple to
implement and easy to understand, we would like to present avariable-length scheme which may more
obviously connect with other known hashing methods such as the Count-Min (CM) sketch [6].

As in the fixed-length scheme, we first conduct a permutationπ : Ω → Ω. Instead of dividing the space
evenly, we vary the bin lengths according to a multinomial distributionmult

(

D, 1k ,
1
k , ...,

1
k

)

.

This variable-length scheme is equivalent to first uniformly grouping the original data entries intok bins
and then applying permutations independently within each bin. The latter explanation connects our method
with the Count-Min (CM) sketch [6] (but without the “count-min” step), which also hashes the elements
uniformly to k bins and the final (stored) hashed value in each bin is the sum of all the elements in the bin.
The bias of the CM estimate can be removed by subtracting a term. [20] adopted the CM sketch for linear
learning. Later, [24] proposed a novel idea (named “VW”) to remove the bias, by pre-multiplying (element-
wise) the original data vectors with a random vector whose entries are sampled i.i.d. from the two-point
distribution in{−1, 1} with equal probabilities. In a recent paper, [18] showed that the variance of the CM
sketch and variants are equivalent to the variance of randomprojections [16], which is substantially larger
than the variance of the minwise hashing when the data are binary.

Since [18] has already conducted (theoretical and empirical) comparisons with CM and VW methods,
we do not include more comparisons in this paper. Instead, wehave simply showed that with one permuta-
tion only, we are able to achieve essentially the same accuracy as usingk permutations.

We believe the fixed-length scheme is more convenient to implement. Nevertheless, we would like to
present some theoretical results for the variable-length scheme, for better understanding the differences. The
major difference is the distribution ofNemp, the number of jointly empty bins.

Lemma 8 Under the variable-length scheme,

E (Nemp)

k
=

(

1− 1

k

)f1+f2−a

(29)
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V ar (Nemp)

k2
=
1

k

(

E(Nemp)

k

)(

1− E(Nemp)

k

)

(30)

−
(

1− 1

k

)

(

(

1− 1

k

)2(f1+f2−a)

−
(

1− 2

k

)f1+f2−a
)

<
1

k

(

E(Nemp)

k

)(

1− E(Nemp)

k

)

(31)

Proof: See Appendix H. �

The other theoretical results for the fixed-length scheme which are expressed in termsNemp essentially
hold for the variable-length scheme. For example,Nmat

k−Nemp
is still an unbiased estimator ofR and its vari-

ance is in the same form as (24) in terms ofNemp.

Remark: The number of empty bins for the variable-length scheme as presented in (29) is actually an upper
bound of the number of empty bins for the fixed length scheme asshown in (10). The difference between
∏f−1

j=0

D(1− 1
k )−j

D−j and
(

1− 1
k

)f
(recall f = f1 + f2 − a) is small when the data are sparse, as shown in

Lemma 2, although it is possible that
∏f−1

j=0

D(1− 1
k )−j

D−j ≪
(

1− 1
k

)f
in corner cases. Because smallerNemp

implies potentially better performance, we conclude that the fixed-length scheme should be sufficient and
there are perhaps no practical needs to use the variable-length scheme.

8 Conclusion

A new hashing algorithm is developed for large-scale searchand learning in massive binary data. Compared
with the originalk-permutation (e.g.,k = 500) minwise hashing algorithm (which is the standard procedure
in the context of search), our method requires only one permutation and can achieve similar or even better
accuracies at merely1/k of the original preprocessing cost. We expect that our proposed algorithm (or its
variant) will be adopted in practice.
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A Proof of Lemma 1

RecallNemp =
∑k

j=1 Iemp,j, whereIemp,j = 1 if, in the j-th bin, bothπ(S1) and π(S2) are empty,
and Iemp,j = 0 otherwise. Also recallD = |Ω|, f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|. Obviously, if
D
(

1− 1
k

)

< f1 + f2 − a, then none of the bins will be jointly empty, i.e.,E(Nemp) = V ar(Nemp) = 0.
Next, assumeD

(

1− 1
k

)

≥ f1 + f2 − a, then by the linearity of expectation,

E (Nemp) =

k
∑

j=1

Pr (Iemp,j = 1) = kPr (Iemp,1 = 1) = k

(D(1− 1
k )

f1+f2−a

)

( D
f1+f2−a

) = k

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

To derive the variance, we first assumeD
(

1− 2
k

)

≥ f1 + f2 − a. Then

V ar (Nemp) =E
(

N2
emp

)

− E2 (Nemp)

=E





k
∑

j=1

I2emp,j +
∑

i 6=j

Iemp,iIemp,j



− E2 (Nemp)

=k(k − 1)Pr (Iemp,1 = 1, Iemp,2 = 1) + E (Nemp)−E2 (Nemp)

=k(k − 1)×
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j

+ k ×
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
−



k ×
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





2

If D
(

1− 2
k

)

< f1 + f2 − a ≤ D
(

1− 1
k

)

, thenPr (Iemp,1 = 1, Iemp,2 = 1) = 0 and hence

V ar (Nemp) = E (Nemp)− E2 (Nemp) = k ×
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
−



k ×
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





2

AssumingD
(

1− 2
k

)

≥ f1 + f2 − a, we obtain

V ar (Nemp)

k2
=
1

k





f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j







1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





−
(

1− 1

k

)









f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





2

−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j





=
1

k

(

E(Nemp)

k

)(

1− E(Nemp)

k

)

−
(

1− 1

k

)









f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





2

−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j





<
1

k

(

E(Nemp)

k

)(

1− E(Nemp)

k

)

23



because
(

D
(

1− 1
k

)

− j

D − j

)2

− D
(

1− 2
k

)

− j

D − j
> 0

⇐⇒
(

D

(

1− 1

k

)

− j

)2

> (D − j)

(

D

(

1− 2

k

)

− j

)

⇐⇒
(

1− 1

k

)2

= 1− 2

k
+

1

k2
> 1− 2

k

This completes the proof.

B Proof of Lemma 2

The following expansions will be useful

n−1
∑

j=1

1

j
= log n+ 0.577216 − 1

2n
− 1

12n2
+ ... ([10, 8.367.13]) (32)

log(1− x) = −x− x2

2
− x3

3
− ... (|x| < 1) (33)

AssumeD
(

1− 1
k

)

≥ f1 + f2 − a. We can write

E (Nemp)

k
=

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
=

(

1− 1

k

)f1+f2−a

×
f1+f2−a−1
∏

j=0

(

1− j

(k − 1)(D − j)

)

Hence it suffices to study the error term

f1+f2−a−1
∏

j=0

(

1− j

(k − 1)(D − j)

)

.

log

f1+f2−a−1
∏

j=0

(

1− j

(k − 1)(D − j)

)

=

f1+f2−a−1
∑

j=0

log

(

1− j

(k − 1)(D − j)

)

=

f1+f2−a−1
∑

j=0

{

− j

(k − 1)(D − j)
− 1

2

(

j

(k − 1)(D − j)

)2

− 1

3

(

j

(k − 1)(D − j)

)3

+ ...

}

Take the first term,
f1+f2−a−1
∑

j=0

− j

(k − 1)(D − j)
=

1

k − 1

f1+f2−a−1
∑

j=0

D − j

D − j
− D

D − j

=
1

k − 1



f1 + f2 − a−D

f1+f2−a−1
∑

j=0

1

D − j





=
1

k − 1



f1 + f2 − a−D





D
∑

j=1

1

j
−

D−f1−f2+a
∑

j=1

1

j









=
1

k − 1

(

f1 + f2 − a−D

(

log(D + 1)− 1

2(D + 1)
− log(D − f1 − f2 + a+ 1) +

1

2(D − f1 − f2 + a+ 1)

)

+ ...

)
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Thus, we obtain (by ignoring a termD
D+1 )

f1+f2−a−1
∏

j=0

(

1− j

(k − 1)(D − j)

)

= exp





−D log D+1
D−f1−f2+a+1 + (f1 + f2 − a)

(

1− 1
2(D−f1−f2+a+1)

)

k − 1
+ ...





Assumingf1 + f2 − a ≪ D, we can further expandlog D+1
D−f1−f2+a+1 and obtain a more simplified

approximation:

E (Nemp)

k
=

(

1− 1

k

)f1+f2−a(

1−O

(

(f1 + f2 − a)2

kD

))

Next, we analyze the approximation of the variance by assuming f1 + f2 − a ≪ D. A similar analysis
can show that

f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j
=

(

1− 2

k

)f1+f2−a(

1−O

(

(f1 + f2 − a)2

kD

))

and hence we obtain, by using1− 2
k =

(

1− 1
k

)

(

1− 1
k−1

)

,

V ar (Nemp)

k2

=

(

1− 2

k

)f1+f2−a

−
(

1− 1

k

)2(f1+f2−a)

+
1

k

(

(

1− 1

k

)f1+f2−a

−
(

1− 2

k

)f1+f2−a
)

+O

(

(f1 + f2 − a)2

kD

)

=
1

k

(

1− 1

k

)f1+f2−a
(

1−
(

1− 1

k

)f1+f2−a
)

−
(

1− 1

k

)f1+f2−a+1
(

(

1− 1

k

)f1+f2−a

−
(

1− 1

k − 1

)f1+f2−a
)

+O

(

(f1 + f2 − a)2

kD

)

C Proof of Lemma 3

Let q(D, k, f) = Pr (Nemp = 0) andDjk = D(1− j/k). Then,

Pr (Nemp = j) =

(

k

j

)

P{Iemp,1 = · · · = Iemp,j = 1, Iemp,j+1 = · · · = Iemp,k = 0}

=

(

k

j

)

P
Djk

f

PD
f

q(Djk, k − j, f).

wherePD
f is the “permutation” operator:PD

f = D(D − 1)(D − 2)...(D − f + 1).
Thus, to derivePr (Nemp = j), we just need to findq(D, k, f). By the union-intersection formula,

1− q(D, k, f) =

k
∑

j=1

(−1)j−1

(

k

j

)

E

j
∏

i=1

Iemp,i.
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From Lemma 1, we can inferE
∏j

i=1 Iemp,i = P
Djk

f /PD
f =

∏f−1
t=0

D(1− j

k )−t

D−t . Thus we find

q(D, k, f) = 1 +
k
∑

j=1

(−1)j
(

k

j

)

P
Djk

f

PD
f

=
k
∑

j=0

(−1)j
(

k

j

)

P
Djk

f

PD
f

.

It follows that

Pr (Nemp = j) =

(

k

j

) k−j
∑

s=0

(−1)s
(

k − j

s

)

P
D(1−j/k−s/k)
f

PD
f

=

k−j
∑

s=0

(−1)s
k!

j!s!(k − j − s)!

f−1
∏

t=0

D
(

1− j+s
k

)

− t

D − t

D Proof of Lemma 4

Define

S1 ∪ S2 = {j1, j2, ..., jf1+f2−a}
J = minπ(S1 ∪ S2) = min

1≤i≤f1+f2−a
π(ji)

T = argmin
i

π(ji), i.e.,π(jT ) = J

Becauseπ is a random permutation, we know

Pr (T = i) = Pr (jT = ji) = Pr (π(jT ) = π(ji)) =
1

f1 + f2 − a
, 1 ≤ i ≤ f1 + f2 − a

Due to symmetry,

Pr(T = i|J = t) = Pr(π(ji) = t| min
1≤l≤f1+f2−a

π(jl) = t) =
1

f1 + f2 − a

and hence we know thatJ andT are independent. Therefore,

E(Nmat) =

k
∑

j=1

Pr(Imat,j = 1) = kPr(Imat,1 = 1)

=kPr (jT ∈ S1 ∩ S2, 0 ≤ J ≤ D/k − 1)

=kPr (jT ∈ S1 ∩ S2)Pr (0 ≤ J ≤ D/k − 1)

=kRPr (Iemp,1 = 0)

=kR

(

1− E (Nemp)

k

)

E(N2
mat) =E









k
∑

j=1

Imat,j





2

 = E





k
∑

j=1

Imat,j +
k
∑

i 6=j

Imat,iImat,j





=E(Nmat) + k(k − 1)E(Imat,1Imat,2)
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E(Imat,1Imat,2) = Pr (Imat,1 = 1, Imat,2 = 1)

=

D/k−1
∑

t=0

Pr (Imat,1 = 1, Imat,2 = 1|J = t)Pr (J = t)

=

D/k−1
∑

t=0

Pr (jT ∈ S1 ∩ S2, Imat,2 = 1|J = t)Pr (J = t)

=

D/k−1
∑

t=0

Pr (Imat,2 = 1|J = t, jT ∈ S1 ∩ S2)Pr (jT ∈ S1 ∩ S2)Pr (J = t)

=R

D/k−1
∑

t=0

Pr (Imat,2 = 1|J = t, jT ∈ S1 ∩ S2)Pr (J = t)

Note that, conditioning on{J = t, jT ∈ S1 ∩ S2}, the problem (i.e., the event{Imat,2 = 1}) is actually
the same as our original problem withf1 + f2 − a− 1 elements whose locations are uniformly random on
{t+ 1, t+ 2, ...,D − 1}. Therefore,

E(Imat,1Imat,2)

=R

D/k−1
∑

t=0

a− 1

f1 + f2 − a− 1



1−
f1+f2−a−2
∏

j=0

D
(

1− 1
k

)

− t− 1− j

D − t− 1− j



Pr (J = t)

=R
a− 1

f1 + f2 − a− 1

D/k−1
∑

t=0

Pr (J = t)



1−
f1+f2−a−2
∏

j=0

D
(

1− 1
k

)

− t− 1− j

D − t− 1− j





=R
a− 1

f1 + f2 − a− 1





D/k−1
∑

t=0

Pr (J = t)−
D/k−1
∑

t=0

Pr (J = t)

f1+f2−a−2
∏

j=0

D
(

1− 1
k

)

− t− 1− j

D − t− 1− j





By observing that

Pr(J = t) =

( D−t−1
f1+f2−a−1

)

( D
f1+f2−a

) =
f1 + f2 − a

D

t−1
∏

j=0

D − f1 − f2 + a− j

D − 1− j
=

f1 + f2 − a

D

f1+f2−a−1
∏

j=1

D − t− j

D − j

D/k−1
∑

t=0

Pr(J = t) = 1−Pr (Iemp,1 = 1) = 1− E (Nemp)

k
= 1−

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

we obtain two interesting (combinatorial) identities

f1 + f2 − a

D

D/k−1
∑

t=0

t−1
∏

j=0

D − f1 − f2 + a− j

D − 1− j
= 1−

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

f1 + f2 − a

D

D/k−1
∑

t=0

f1+f2−a−1
∏

j=1

D − t− j

D − j
= 1−

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
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which helps us simplify the expression:

D/k−1
∑

t=0

Pr (J = t)

f1+f2−a−2
∏

j=0

D
(

1− 1
k

)

− t− 1− j

D − t− 1− j

=

D/k−1
∑

t=0

f1 + f2 − a

D

f1+f2−a−1
∏

j=1

D − t− j

D − j

f1+f2−a−2
∏

j=0

D
(

1− 1
k

)

− t− 1− j

D − t− 1− j

=

D/k−1
∑

t=0

f1 + f2 − a

D

f1+f2−a−1
∏

j=1

D
(

1− 1
k

)

− t− j

D − j

=

2D/k−1
∑

t=0

f1 + f2 − a

D

f1+f2−a−1
∏

j=1

D − t− j

D − j
−

D/k−1
∑

t=0

f1 + f2 − a

D

f1+f2−a−1
∏

j=1

D − t− j

D − j

=



1−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j



−



1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





=−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j
+

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j

Combining the results, we obtain

E(Imat,1Imat,2)

=R
a− 1

f1 + f2 − a− 1



1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
+

f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j
−

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





=R
a− 1

f1 + f2 − a− 1



1− 2

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
+

f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j





And hence

V ar(Nmat) = k(k − 1)E(Imat,1Imat,2) +E(Nmat)− E2(Nmat)

=k(k − 1)R
a− 1

f1 + f2 − a− 1



1− 2

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
+

f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j





+ kR



1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j



− k2R2



1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





2
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V ar(Nmat)

k2

=
1

k

(

E(Nmat)

k

)(

1− E(Nmat)

k

)

+

(

1− 1

k

)

R
a− 1

f1 + f2 − a− 1



1− 2

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
+

f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D − j





−
(

1− 1

k

)

R2



1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





2

<
1

k

(

E(Nmat)

k

)(

1− E(Nmat)

k

)

+

(

1− 1

k

)

R2



1− 2

f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
+





f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





2



−
(

1− 1

k

)

R2



1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





2

=
1

k

(

E(Nmat)

k

)(

1− E(Nmat)

k

)

To see the inequality, note that a−1
f1+f2−a−1 < R = a

f1+f2−a , and
D(1− 2

k )−j

D−j <

(

D(1− 1
k)−j

D−j

)2

as proved

towards the end of Appendix A. This completes the proof.

E Proof of Lemma 5

E (NmatNemp) =E





k
∑

j=1

Imat,j

k
∑

j=1

Iemp,j



 =

k
∑

j=1

E (Imat,jIemp,j) +
∑

i 6=j

E (Imat,iIemp,j)

=0 +
∑

i 6=j

E (Imat,iIemp,j) = k(k − 1)E (Iemp,1Imat,2)

E (Iemp,1Imat,2) =Pr (Iemp,1 = 1, Imat,2 = 1) = Pr (Imat,2 = 1|Iemp,1 = 1)Pr (Iemp,1 = 1)

=R



1−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j





f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
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Cov (Nmat, Nemp) = E (NmatNemp)− E (Nmat)E (Nemp)

=k(k − 1)R



1−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j









f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





− kR



1−
f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j



 k





f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





=k2R





f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j









f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
−

f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j





− kR



1−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j









f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j



 ≤ 0

To see the inequality, it suffices to show thatg(k) < 0, where

g(k) =k





f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j
−

f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j



−



1−
f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j





=k





f1+f2−a−1
∏

j=0

D
(

1− 1
k

)

− j

D − j



− 1− (k − 1)





f1+f2−a−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j





Becauseg(k = ∞) = 0, it suffices to show thatg(k) is increasing ink.

g(f ; k) =k





f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j



− 1− (k − 1)





f−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j





g(f + 1; k) =k





f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





(

D
(

1− 1
k

)

− f

D − f

)

− 1− (k − 1)





f−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j





(

D
(

1− 2
k

)

− f

D
(

1− 1
k

)

− f

)

=g(f ; k)−





f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





(

D

D − f

)

+





f−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j





(

D
(

1− 1
k

)

D
(

1− 1
k

)

− f

)

Thus, it suffices to show

−





f−1
∏

j=0

D
(

1− 1
k

)

− j

D − j





(

D

D − f

)

+





f−1
∏

j=0

D
(

1− 2
k

)

− j

D
(

1− 1
k

)

− j





(

D
(

1− 1
k

)

D
(

1− 1
k

)

− f

)

≤ 0

⇐⇒h(f ; k) =





f−1
∏

j=0

(

D
(

1− 2
k

)

− j
)

(D − j)
(

D
(

1− 1
k

)

− j
)2





(

(

1− 1
k

)

(D − f)

D
(

1− 1
k

)

− f

)

≤ 1

h(f ; k) ≤ 1 holds because one can check thath(1; k) ≤ 1 and
(D(1− 2

k )−j)(D−j)

(D(1− 1
k )−j)

2 < 1.

This completes the proof.
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F Proof of Lemma 6

We first prove that̂Rmat =
Nmat

k−Nemp
is unbiased,

Iemp,j = 1 ⇒ Imat,j = 0

E
(

Imat,j

∣

∣

∣
Iemp,j = 0

)

= R

E
(

Imat,j

∣

∣

∣
k −Nemp = m

)

= (m/k)R, m > 0

P{k −Nemp > 0} = 1

E
(

Nmat

∣

∣

∣k −Nemp

)

= R(k −Nemp)

E
(

Nmat/(k −Nemp)
∣

∣

∣k −Nemp

)

= R independent ofNemp

E
(

R̂mat

)

= R

Next, we compute the variance. To simplify the notation, denotef = f1 + f2 − a andR̃ = a−1
f−1 . Note

that

E
(

Imat,1Imat,2

∣

∣

∣
Iemp,1 = Iemp,2 = 0

)

= R(a− 1)/(f − 1) = RR̃

R2 −RR̃ = R{a(f − 1)− f(a− 1)}/{f(f − 1)} = R(1−R)/(f − 1)

E
(

Imat,1Imat,2

∣

∣

∣Iemp,1 + Iemp,2 > 0
)

= 0

By conditioning onk −Nemp, we obtain

E
(

N2
mat

∣

∣

∣
k −Nemp = m

)

= kE
(

Imat,1

∣

∣

∣
k −Nemp = m

)

+ k(k − 1)E
(

Imat,1Imat,2

∣

∣

∣
k −Nemp = m

)

= Rm+ k(k − 1)RR̃Pr

(

Iemp,1 = Iemp,2 = 0
∣

∣

∣
k −Nemp = m

)

= Rm+ k(k − 1)RR̃

(

m

2

)

/

(

k

2

)

= Rm+m(m− 1)RR̃

and

E
(

R̂2
mat

∣

∣

∣k −Nemp = m
)

= RR̃+ (R−RR̃)/m

ER̂2
mat = RR̃+ (R−RR̃)E(k −Nemp)

−1

Combining the above results, we obtain

V ar
(

R̂mat

)

=RR̃−R2 + (R−RR̃)E(k −Nemp)
−1

=R(1−R)E(k −Nemp)
−1 − (R2 −RR̃)(1 − E(k −Nemp)

−1)

=R(1−R)E(k −Nemp)
−1 −R(1−R)(f − 1)−1(1− E(k −Nemp)

−1)

=R(1−R)
{

E(k −Nemp)
−1 − (f − 1)−1 + (f − 1)−1E(k −Nemp)

−1)
}
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G Proof of Lemma 7

g(f ; k) =
1

1−
(

1− 1
k

)f

(

1 +
1

f − 1

)

− k

f − 1

To showg(f ; , k) ≤ 1, it suffices to show

h(f ; k) = (f + k − 1)

(

1−
(

1− 1

k

)f
)

− f ≥ 0 (note thath(1; k) = 0, h(2; k) > 0)

for which it suffices to show

∂h(f ; k)

∂f
=

(

1−
(

1− 1

k

)f
)

+ (f + k − 1)

(

−
(

1− 1

k

)f

log

(

1− 1

k

)

)

− 1 ≥ 0

and hence it suffices to show−1− (f + k − 1) log
(

1− 1
k

)

≥ 0, which is true becauselog
(

1− 1
k

)

< − 1
k .

This completes the proof.

H Proof of Lemma 8

Recall we first divide theD elements intok bins whose lengths are multinomial distributed with equal
probability 1

k . We denote their lengths byLj , j = 1 to k. In other words,

(L1, L2, ..., Lk) ∼ multinomial

(

D,
1

k
,
1

k
, ...,

1

k

)

and we know

E(Lj) =
D

k
, V ar(Lj) = D

1

k

(

1− 1

k

)

, Cov(Li, Lj) = −D

k2

Define

Ii,j =

{

1 if the i-th element is hashed to thej-th bin
0 otherwise

(34)

We know

E(Ii,j) =
1

k
, E(I2i,j) =

1

k
, E(Ii,jIi,j′) = 0, E(Ii,jIi′,j) =

1

k2
,

E(1− Ii,j) = 1− 1

k
, E(1− Ii,j)

2 = 1− 1

k
, E(1− Ii,j)(1 − Ii,j′) = 1− 2

k

Thus

Nemp =

k
∑

j=1

∏

i∈S1∪S2

(1− Ii,j)
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E (Nemp) =

k
∑

j=1

∏

i∈S1∪S2

E ((1− Ii,j)) = k

(

1− 1

k

)f1+f2−a

E
(

N2
emp

)

=
k
∑

j=1

∏

i∈S1∪S2

(1− Ii,j)
2 +

∑

j 6=j′

∏

i∈S1∪S2

(1− Ii,j)
(

1− Ii,j′
)

=k

(

1− 1

k

)f1+f2−a

+ k(k − 1)

(

1− 2

k

)f1+f2−a

V ar (Nemp) =k

(

1− 1

k

)f1+f2−a

+ k(k − 1)

(

1− 2

k

)f1+f2−a

− k2
(

1− 1

k

)2(f1+f2−a)

Therefore,

V ar (Nemp)

k2
=
1

k

(

1− 1

k

)f1+f2−a
(

1−
(

1− 1

k

)f1+f2−a
)

−
(

1− 1

k

)

(

(

1− 1

k

)2(f1+f2−a)

−
(

1− 2

k

)f1+f2−a
)

<
1

k

(

1− 1

k

)f1+f2−a
(

1−
(

1− 1

k

)f1+f2−a
)

This completes the proof of Lemma 8.
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