arxXiv:1208.1259v1 [cs.LG] 6 Aug 2012

One Permutation Hashing for Efficient Search and Learning

Ping Li Art Owen Cun-Hui Zhang
Dept. of Statistical Science Dept. of Statistics Dept. of Statistics
Cornell University Stanford University Rutgers University
Ithaca, NY 14853 Stanford, CA 94305 New Brunswick, NJ 08901
pingli@cornell.edu owen@stanford.edu czhang@stat.rutgers.edu
Abstract

Minwise hashing is a standard procedure in the context athe#or efficiently estimating set similari-
ties in massive binary data such as text. Recently, the rdethiabit minwise hashing has been applied
to large-scale linear learning (e.qg., linear SVM or logisggression) and sublinear time near-neighbor
search. The major drawback of minwise hashing is the expepseprocessing cost, as the method re-
quires applying (e.g.} = 200 to 500 permutations on the data. The testing time can alsafEnsive

if a new data point (e.g., a new document or image) has notjp@aessed, which might be a significant
issue in user-facing applications. While it is true thatpheprocessing step can be parallelized, it comes
at the cost of additional hardware & implementation and isamoenergy-efficient solution.

We develop a very simple solution based @me permutation hashing Conceptually, given a mas-
sive binary data matrix, we permute the columns only oncedivide the permuted columns evenly
into k& bins; and we simply store, for each data vector, the smal@stero location in each bin. The
interesting probability analysis (which is validated byperments) reveals that our one permutation
scheme should perform very similarly to the origindgermutation) minwise hashing. In fact, the one
permutation scheme can be even slightly more accuratepdbe tsample-without-replacement” effect.

Our experiments with training linear SVM and logistic reggi®n on thevebspam dataset demonstrate
that this one permutation hashing scheme can achieve the(samven slightly better) accuracies com-
pared to the originat-permutation scheme. To test the robustness of our meth®a@/s® experiment
with the smallnews20 dataset which is very sparse and has merely on average 5@8nosrin each data
vector. Interestingly, our one permutation scheme noligeautperforms the:-permutation scheme
whenk is not too small on theews20 dataset. In summary, our method can achieve at least the same
accuracy as the originatpermutation scheme, at merdlyk of the original preprocessing cost.

1 Introduction

Minwise hashing([4, 3] is a standard technique for efficiethmputing set similarities, especially in the
context of search. Recently;bit minwise hashing [17], which stores only the lowédtits of each hashed
value, has been applied to sublinear time near neighbocts¢2i] and linear learning (linear SVM and
logistic regression)[[18], on large-scale high-dimenaloninary data (e.g., text), which are common in
practice. The major drawback of minwise hashing &t minwise hashing is that they require an expen-
sive preprocessing step, by conductinfe.g., 200 to 500) permutations on the entire dataset.

1.1 Massive High-Dimensional Binary Data

In the context of search, text data are often processed tmbgey/hin extremely high dimensions. A standard
procedure is to represent documents (e.g., Web pages) usitingles (i.e.w contiguous words), where

http://arxiv.org/abs/1208.1259v1

w > 5 in several studies [4,8]. This means the size of the dictipnaeds to be substantially increased,
from (e.g.,)10° common English words td0°* “super-words”. In current practice, it seems sufficient to
set the total dimensionality to B = 264, for convenience. Text data generatedupyghingles are often
treated as binary. In fact, fes > 3, it is expected that most of the-shingles will occur at most one time in
a document. Also, note that the idea of shingling can be abyuextended to images in Computer Vision,
either at the pixel level (for simple aligned images) or at fision feature level[22].

In machine learning practice, the use of extremely highedisional data has become common. For
example, [[28] discusses training datasets with (on avgrage 10! items andD = 10 distinct features.
[24] experimented with a dataset of potentially= 16 trillion (1.6 x 10'3) unique features.

1.2 Minwise Hashing

Minwise hashing is mainly designed for binary data. A bin@@l) data vector can be equivalently viewed
as a set (locations of the nonzeros). Consider Sets Q@ = {0,1,2,..., D — 1}, whereD, the size of the
space, is often set to @ = 254 in industrial applications. The similarity between twoss&t and S, is
commonly measured by thhesemblance, which is a normalized version of the inner product:

_[SinSy| a

a ’51U52’ a f1+f2—a’
For large-scale applications, the cost of computing resmmabs exactly can be prohibitive in time,

space, and energy-consumption. The minwise hashing metasgroposed for efficient computing resem-

blances. The method requires applyfnghdependent random permutations on the data.

Denoter a random permutationt : 2 — Q. The hashed values are the two minimums of the sets after
applying the permutation on .S, and.S,. The probability at which the two hashed values are equal is

R

wherefi = [S1|, fo = |52, a =[S1 N Sy 1)

. . |S1.NSs
P = = - == 2
r (min(7(S7)) = min(7(S2))) 5,0 5] R 2
One can then estimat from %k independent permutations;, ..., m:
) 1 R 1
Ry =< ; 1{min(7;(S,)) = min(r;(S2))}, Var (RM) = R -R) 3)

Because the indicator function{min(;(S1)) = min(7;(S2))} can be written as an inner product
between two binary vectors (each having only one 1pidimensions[[18]:

D—1
H{min(;(S1)) = min(7;(S2))} = > Hmin(m;(S1)) = i} x H{min(m;(S2)) = i} (4)
i=0

we know that minwise hashing can be potentially used foningi linear SVM and logistic regression on
high-dimensional binary data by converting the permutdéd oo a new data matrix i x k& dimensions.
This of course would not be realistic i# = 264,

The method ob-bit minwise hashing [17] provides a simple solution by stgronly the lowesb bits
of each hashed data. This way, the dimensionality of therelgh data matrix from the hashed data would
be only2’ x k as opposed t8%* x k. [18] applied this idea to large-scale learning onhebspam dataset
(with about 16 million features) and demonstrated thatgisia- 8 andk = 200 to 500 could achieve very
similar accuracies as using the original data. More regefll] directly used the bits generated byit
minwise hashing for building hash tables to achieve subliniene near neighbor search. We will briefly
review these two important applications in 9dc. 2. Note llodih applications require the hashed data to be
“aligned” in that only the hashed data generated by the samaygation are interacted. For example, when
computing the inner products, we simply concatenate thdtssfsom & permutations.

2

1.3 The Cost of Preprocessing and Testing

Clearly, the preprocessing step of minwise hashing can beoastly. For example, in our experiments,
loading thenvebspam dataset (350,000 samples, about 16 million features, amat 4GB in Libsvm/svmlight
format) used in[[18] took about000 seconds when the data are stored in Libsvm/svmlight (texthat,
and took about 50 seconds after we converted the data into binary. In contitastpreprocessing cost for
k = 500 was about 6000 seconds (whichsis150). Note that, compared to industrial applications [23], the
webspam dataset is very small. For larger datasets, the preprogestp will be much more expensive.

In the testing phrase (in search or learning), if a new datat §e.g., a new document or a new image)
has not processed, then the cost will be expensive if it dedithe preprocessing cost. This may raise sig-
nificant issues in user-facing applications where thengstificiency is crucial.

Intuitively, the standard practice of minwise hashing dugtbe very “wasteful” in that all the nonzero
elements in one set are scanned (permuted) but only theesthalie will be used.

1.4 Our Proposal: One Permutation Hashing

As illustrated in Figuréll, the idea ohe permutation hashing is very simple. We view sets as 0/1 vectors
in D dimensions so that we can treat a collection of sets as aybitzia matrix inD dimensions. After we
permute the columns (features) of the data matrix, we dithdecolumns evenly inté parts (bins) and we
simply take, for each data vector, the smallest nonzeroesiéim each bin.

1, 2 , 3, 4

1 1 1
0 1 2 3,4 5 6 7,8 9 10 11,12 13 14 15
1 1 1

1 1 1

TS): 00 10:1001:0000!0100
1 1 1

mMS,): 100 1'0010'0000'0100
1 1 1

mMS,): 1100,0000;0010;1000

Figure 1: Fixed-length hashing scheme ConsiderSy, S, 53 € Q = {0,1,...,15} (i.e., D = 16). We
apply one permutatiom on the three sets and preseritS;), 7(S2), and=(Ss) as binary (0/1) vectors,
wheren(S1) = {2,4,7,13}, 7(S2) = {0, 6, 13}, and=(S3) = {0, 1,10, 12}. We divide the spacg evenly
into k = 4 bins, select the smallest nonzero in each bin,rariddex the selected elements as three samples:
[2, 0, %, 1], [0, 2, %, 1], and[0, *, 2, 0]. For now, we use ' for empty bins, which occur rarely unless
the number of nonzeros is small compared to

In the example in Figurid 1 (which concerns 3 sets), the sasgéeted fromr(S;) is [2, 4, *, 13], where
we use *' to denote an empty bin, for the time being. Sinceyamhnt to compare elements with the same
bin number (so that we can obtain an inner product), we carabigtre-index the elements of each bin to
use the smallest possible representations. For example($9), after re-indexing, the samp|, 4, x, 13]
becomeg$2—4x0,4—4x1,*,13—4x3] = [2,0, *, 1]. Similarly, for7(Ss), the original samplé0, 6, *, 13]
becomeg0,6 — 4 x 1,%,13 — 4 x 3] = [0, 2, , 1], etc.

Note that, when there are no empty bins, similarity estiomais equivalent to computing an inner
product, which is crucial for taking advantage of the modarear learning algorithms [13, 19} [7,111]. We
will show that empty bins occur rarely unless the total nundieonzeros for some set is small compared
to k, and we will present strategies on how to deal with empty bivmuld they occur.

1.5 Summary of the Advantages of One Permutation Hashing

e Reducingk (e.g., 500) permutations to just one permutation (or a feunuch more computationally
efficient. From the perspective of energy consumption, shfseme is highly desirable, especially
considering that minwise hashing is deployed in the seardhsiry.

e While it is true that the preprocessing can be parallelitecthmes at the cost of additional hardware
and software implementation.

¢ Inthe testing phase, if a new data point (e.g., a new docuarenhew image) has to be first processed
with & permutations, then the testing performance may not meedehend in for example user-
facing applications such as search or interactive visuallyéios.

e It should be much easier to implement the one permutatiohifigghan the originak-permutation
scheme, from the perspective of random number generatmrexXample, if a dataset has one billion
features D = 10”), we can simply generate a “permutation vector” of length= 10°, the memory
cost of which (i.e., 4GB) is not significant. On the other hamdvould not be realistic to store a
“permutation matrix” of sizeD x k if D = 10° andk = 500; instead, one usually has to resort to
approximations such as using universal hashing [5] to aqmeate permutations. Universal hashing
often works well in practice although theoretically there always worst cases. Of course, wlignr=
264 we have to use universal hashing, but it is always much etsgenerate just one permutation.

e One permutation hashing is a better matrix sparsificatiblerse than the original-permutation. In
terms of the original binary data matrix, the one permutasoheme simply makes many nonzero
entries be zero, without further “damaging” the originaladenatrix. With the originak-permutation
scheme, we store, for each permutation and each row, onligréieéonzero and make all the other
nonzero entries be zero; and then we have to concatérsteh data matrices. This will significantly
change the structure of the original data matrix. As a camsecge, we expect that our one permutation
scheme will produce at least the same or even more accugatisteas later verified by experiments.

1.6 Related Work

One of the authors worked on another “one permutation” seheamedConditional Random Sampling
(CRS) [14,[15] since 2005. Basically, CRS works by continuouskirtg the firstk nonzeros after applying
one permutation on the data, then it uses a simple “trick"ctstruct a random sample for each pair with
the effective sample size determined at the estimatiorestagtaking the nonzeros continuously, however,
the samples are no longer “aligned” and hence we can not thigtestimator as an inner product in a unified
fashion. In comparison, our new one permutation schemesnayKirst breaking the columns evenly irto
bins and then taking the first nonzero in each bin, so thatdlsbdd data can be nicely aligned.

Interestingly, in the original “minwise hashing” papér [#Je use quotes because the scheme was not
called “minwise hashing” at that time), only one permutatizas used and a sample was the firabnzeros
after the permutation. After the authors of [4] realized: & estimators could not be written as an inner
product and hence the scheme was not suitable for many apptis such as sublinear time near neighbor
search using hash tables, they quickly moved toitimermutation minwise hashing scheme [3]. In the
context of large-scale linear learning, the importanceavfitig estimators which are inner products should
become more obvious aftér |18] introduced the idea of udifgt] minwise hashing for linear learning.

We are also inspired by the work on “very sparse random pliojeg’ [16]. The regular random projec-
tion method also has the expensive preprocessing cost asedsh projections. The work of [16] showed

that one can substantially reduce the preprocessing casiby an extremely sparse projection matrix. The
preprocessing cost of “very sparse random projections’beasis small as merely doing one projecﬂbn.
Figure[1 presents the “fixed-length” scheme, while in Secedmill also develop a “variable-length”
scheme. Two schemes are more or less equivalent, althoudielese the fixed-length scheme is more
convenient to implement (and it is slightly more accurai&)e variable-length hashing scheme is to some
extent related to the Count-Min (CM) sketch [6] and the Voldwabbit (VW) [20,[24] hashing algorithms.

2 Applications of Minwise Hashing on Efficient Search and Leaning

In this section, we will briefly review two important applitans of the original k-permutation) minwise
hashing: (i) sublinear time near neighbor search [21], @nth(ge-scale linear learning [18].

2.1 Sublinear Time Near Neighbor Search

The task ofnear neighbor search is to identify a set of data points which are “most similaratquery data
point. Efficient algorithms for near neighbor search haveerous applications in the context of search,
databases, machine learning, recommending systems, temvion, etc. It has been an active research
topic since the early days of modern computing (é.g, [9]).

In current practice, methods for approximate near neighbarch often fall into the general framework
of Locality Sensitive Hashing (LSH) [12,[1]. The performance of LSH solely depends on its undegly
implementation. The idea in[21] is to directly use the biésgrated by#tbit) minwise hashing to construct
hash tables, which allow us to search near neighbors inreglitime (i.e., no need to scan all data points).

Specifically, we hash the data points usingandom permutations and store each hash value adiitg
(e.g.,b < 4). For each data point, we concatenate the resultaat b x k bits as asignature. The size of
the space i@ = 20>, which is not too large for smallandk (e.g.,bk = 16). This way, we create a table
of 28 buckets, numbered from 0 & — 1; and each bucket stores the pointers of the data points whose
signatures match the bucket number. In the testing phrasapply the samg permutations to a query data
point to generate &k-bit signature and only search data points in the correspgnalicket. Since using
only one hash table will likely miss many true near neighbassa remedy, we generate (using independent
random permutations) hash tables. The query result is the union of the data pairieved inL tables.

Index Data Points

Index Data Points

00 00 :6,110,143

00 00 18, 159, 331

00 01 '3,38,217

00 01 11,25 99

0010 ! (empty)

00 10 }3, 14, 32,97

11 01 :5, 14, 206

11 01 17, 49,208

11 10 131,74,153

11 10 ;33,489

11 11 ;21,142,329

11 11 76,15, 26,79

Figure 2: An example of hash tables, with= 2, kK = 2, andL = 2.

Figure[2 provides an example with= 2 bits, ¥ = 2 permutations, and = 2 tables. The size of each
hash table i2*. Givenn data points, we appl§ = 2 permutations and stofe = 2 bits of each hashed
value to generate (4-bit) signatured. times. Consider data point 6. For Table 1 (left panel of Fe2l,
the lowesth-bits of its two hashed values are 00 and 00 and thus its sigh#& 0000 in binary; hence we

1Seehttp://www.stanford.edu/group/mmds/slides2012/s-pli .pdf for the experimental results on cluster-
ing/classification/regression using very sparse randajegtions [16].

http://www.stanford.edu/group/mmds/slides2012/s-pli.pdf

place a pointer to data point 6 in bucket number 0. For TablegBt(panel of Figur&€l2), we apply another
k = 2 permutations. This time, the signature of data point 6 besoii 11 in binary and hence we place it
in the last bucket. Suppose in the testing phrase, the tvinit)4ignatures of a new data point are 0000 and
1111, respectively. We then only search for the near neighinathe set6, 15, 26, 79,110, 143}, which is
much smaller than the set afdata points.

The experiments in[21] confirmed that this very simple stygtperformed well.

2.2 Large-Scale Linear Learning

The recent development of highly efficient linear learningoathms (such as linear SVM and logistic
regression) is a major breakthrough in machine learninguRo software packages include SY¥[13],
Pegasos [19], Bottou's SGD SVM]|[2], and LIBLINEARI[7].

Given a datasef(x;, yi)}";, x; € RP, y; € {—1,1}, the Lo-regularized logistic regression solves the
following optimization problem:

1 n
min —wrw + C E log (1 + e_inTxi) ,)
w2 —
1=
whereC' > 0 is the regularization parameter. The-regularized linear SVM solves a similar problem:

m“i,n %WTW +C Zz_gmax {1 — ywTx;, O} , (6)

In their approach[[18], they apply random permutations on each (binary) feature vegfaand store
the lowesth bits of each hashed value, to obtain a new dataset which catotel using merelybk bits.
At run-time, each new data point has to be expanded iftosak-length vector with exactly: 1's.

To illustrate this simple procedure, [18] provided a toyrepte withk = 3 permutations. Suppose for
one data vector, the hashed values{d®13, 25964, 20191}, whose binary digits are respectively
{010111011101101, 110010101101100,100111011011111}. Usingb = 2 bits, the binary digits are stored
as{01,00,11} (which corresponds t¢1,0,3} in decimals). At run-time, theb{bit) hashed data are ex-
panded into a vector of lengt?fk = 12, to be{0,0,1,0, 0,0,0,1, 1,0,0,0}, which will be the new
feature vector fed to a solver such as LIBLINEAR. The procedur this feature vector is summarized as
follows:

Original hashed valugg: = 3) : 12013 25964 20191
Original binary representations 010111011101101 110010101101100 100111011011111
Lowestb = 2 binary digits: 01 00 11
Expanded’ = 4 binary digits : 0010 0001 1000
New feature vector fed to a solver [0,0,1,0,0,0,0,1,1,0,0,0] x ﬁ

The same procedure (with the same= 3 permutations) is then applied to all feature vectors. Very
interestingly, we notice that the all-zero vector (0000his texample) is never used when expanding the
data. In our one permutation hashing scheme, we will agtuake advantage of the all-zero vector to
conveniently encode empty bins, a strategy which we widlrlaéfer to as thezero coding strategy.

The experiments in [18] confirmed that this simple proceghadormed well.

Clearly, in both applications (near neighbor search anealinearning), the hashed data have to be
“aligned” in that only the hashed data generated from theega@nmutation are compared with each other.
With our one permutation scheme as presented in Figure hasleed data are indeed aligned according to
the bin numbers. The only caveat is that we need a practiedégly to deal with empty bins, although they
occur rarely unless the number of nonzeros in one data viscsonall compared té, the number of bins.

6

3 Theoretical Analysis of the Fixed-Length One PermutatiorScheme

While the one permutation hashing scheme, as demonstraféidure_1, is intuitive, we present in this
section some interesting probability analysis to providéyarous theoretical foundation for this method.
Without loss of generality, we consider two s8isand.S,. We first introduce two definitions, for the number
of “jointly empty bins” and the number of “matched bins,” pestively:

k k
Nemp = Zlemp,jy Nmat = Z Imat,j (7)
j=1 j=1

wherel,,,, ; andl,,. ; are defined for thg-th bin, as

[1 if both 7(S1) and~(S2) are empty in theg-th bin (8)
“mPd | 0 otherwise
1 if both 7(S;) andn(S;) are not empty and the smallest element- (0§)
Iatj = matches the smallest elementxdfS,), in the j-th bin 9
0 otherwise

Later we will also usd}) . (or 1)) to indicate whether (S1) (or (Ss)) is empty in thej-th bin.

3.1 Expectation, Variance, and Distribution of the Number d Jointly Empty Bins
Recall the notationyf; = |S1|, fo = |S2|, a = |S1 N S3|. We also usg = |S; U Sa| = f1 + f2 — a.
Lemmal AssumeD (1— 1) > f = fi+ f2 —a,

f-1 1y f
Elen) P20 DT < (1) 0

3 “

AssumeD (1—2) > f= fi+ fo —a,

RN N (R RV ANE = E (R Y
(1 k> ((D—j) Py)
j=0 j=0
YR AT

Proof: See Appendix[Al [J
The inequality [(IR) says that the varianceivég is smaller than its “binomial analog.”

In practical scenarios, the data are often sparse,fi.es, f1 + fo — a < D. In this case, Lemmia 2
illustrates that in[(10) the upper bou(lbl— %)f is a good approximation to the true value%fong). Since

(1 — %)f ~ e~//k, we know that the chance of empty bins is small wies k. For example, iff /k = 5

then(1 — %)f ~ 0.0067; if f/k =1, then(1 — %)f ~ 0.3679. For practical applications, we would expect
that f > k (for most data pairs), otherwise hashing probably wouldbeotoo useful anyway. This is why
we do not expect empty bins will significantly impact (if af) dhe performance in practical settings.

7

Lemma2 AssumeD (1— 1) > f= fi+ fo—a.

D
E (Nemp) 1\’ —Dlog D—}_}rl +f (1 - 72(D—1f+1)>

Under the reasonable assumption that the data are sparse i.e, fi+ fo—a=f < D,weabtain
E (Nemp) . l d
k N k
Var (Nemp) 1 1 1\/
e z(“z) (<1‘z> (15)

f+1 f f 2
(L AT T TN
k k k—1 kD
Proof: See Appendix[Bl O

In addition to its mean and variance, we can also write dowrdtstribution ofN,,,.

(14)

Lemma 3
b f—1D<1—jﬁ>—t
k! k
Pr (Nemp = j) =) _(—1)°- . 1T (16)
g glsl(k — 35 —s)! Pl D—t
Proof: See Appendix[C. O
Becauser (Nepmp) = Zf‘ol JjPr (Nemp = j), this yields an interesting combinatorial identity:
1 k-1 k- j f-1p(1—21f3) _¢
_ 1y k! %
kH k J glsl(k —j —s)! < D—t) (7
7=0 7=0 s:0 ‘7 t=0
3.2 Expectation and Variance of the Number of Matched Bins
Lemma4 AssumeD (1— 1) > f = fi+ f2 —a.
E(Nmat) _ E(Nemp) - 1_% _j
e =R (1 - 1 1;[(18)
AssumeD (1—2) > f= fi + fo —a.
VCLT‘(Nmat) o 1 E(Nmat) E(Nmat)
k2 Tk (k ! k (19)
f-1 1 f-1 2
1 a—1 D(1—4)—j D(1—-32)—j
+(1- —> R 1—2 k + b
(k) f-1 (JIJO D—j]UO D—j
f—1 1 .
1> 2 D(1—%)—J
— (1 R 1-]]
(k (i D-J
1 E(Nmat) E(Nmat)
L (B (;_ D) @0
Proof: See Appendix[Dl O

3.3 Covariance ofN,,,; and N.,,,

Intuitively, V,,,; andN.,,, should be negatively correlated, as confirmed by the follgiemma:
Lemma5 AssumeD (1—2) > f = fi + fo —a.

Cov (Nmat, Nemp) D(-¢)—J D-H-j TDO-3) -
32 R(H D—)(H:Djj Dﬂbj)

j=0 Jj=0 J=0
- ~2))\ [(IFD(1-1)—;
. —R 1— E)~J —kZ - (21)
(R (e
and
COU(mat Nemp) S 0 (22)

Proof: See Appendix[El O

3.4 An Unbiased Estimator of R and the Variance

Lemma® shows the following estimaté,,.; of the resemblance is unbiased:

Lemma 6
Ryt = kL%”m (R) R (23)
Var (fom) = 00 =) (8 (=) (1 755) - 725) &y
E<E_Rg;>:klpd mm—J)_k_Eb%w) (25)

j:

Proof: See Appendix [El The right-hand side of the inequality (25) is actually a very good approximation
(see Figure[8). The exact expression for Pr (N.,,, = j) isalready derived in Lemma[3 O

The fact thatt (Rmat) = R may seem surprising as in general ratio estimators are miased. Note
thatk — N.,, > 0 always because we assume the original data vectors aremptetely empty (all-zero).

As expected, wheh < f = f1 + f2 — a, Nen,, IS €ssentially zero and hente:r (Rmat) ~ M In
fact, Var (Rmat) is somewhat smaller thaﬁ(lk‘—m, which can be seen from the approximation:
Var (Rmat> ~ o F) = 1 <1 1) k (26)
- N 7 + —
R(1-R)/k ~ 1 (1-14)7 f-1) f-1
Lemma 7
g(f;k) <1 (27)

Proof: See Appendix[G O

It is probably not surprising that our one permutation sohamnay (slightly) outperform the original
k-permutation scheme (at merelyk of its preprocessing cost), because one permutation fgashim be
viewed as a “sample-without-replacement” scheme.

9

3.5 Experiments for Validating the Theoretical Results

This set of experiments is for validating the theoreticalitss. The Web crawl dataset (in Table 1) consists of
15 (essentially randomly selected) pairs of word vectard)i= 2'¢ dimensions) of a range of similarities
and sparsities. For each word vector, jhth element is whether the word appeared injtte Web page.

Table 1: 15 pairs of English words. For example, “RIGHTS” aRESERVED” correspond to the two sets
of document IDs which contained word “RIGHTS” and word “RESBEED” respectively.

Word 1 Word 2 fi fo f=fi+fo—a R
RIGHTS RESERVED 12234 11272 12526 0.877
OF AND 37339 36289 41572 0.771
THIS HAVE 27695 17522 31647 0.429
ALL MORE 26668 17909 31638 0.409
CONTACT INFORMATION 16836 16339 24974 0.328
MAY ONLY 12067 11006 17953 0.285
CREDIT CARD 2999 2697 4433 0.285
SEARCH WEB 1402 12718 21770 0.229
RESEARCH UNIVERSITY 4353 4241 7017 0.225
FREE USE 12406 11744 19782 0.221
TOP BUSINESS 9151 8284 14992 0.163
BOOK TRAVEL 5153 4608 8542 0.143
TIME JOB 12386 3263 13874 0.128
REVIEW PAPER 3197 1944 4769 0.078
A TEST 39063 2278 2060 0.052

We vary k from 23 to 215, Althoughk = 2% is probably way too large in practice, we use it for the
purpose of thorough validations. Figufés 8}o 8 presentgirical results based o)’ repetitions.

3.5.1 E(Newmp) and Var(Nepp)

Figure[3 and Figurel4 respectively verify(Ne,,,) andVar(Ne,,,) as derived in Lemmal 1. Clearly, the
theoretical curves overlap the empirical curves.

Note thatN,,,, is essentially 0 whe is not large. Roughly wheh/f > 1/5, the number of empty
bins becomes noticeable, which is expected becalise.,,,,)/k ~ (1 — %)f ~ e f/F ande=® = 0.0067.
Practically speaking, as we often use minwise hashing tetaobally reduce the number of nonzeros in
massive datasets, we would expect that usuflly> k£ anyway. See Setl 4 for more discussion about
strategies for dealing with empty bins.

3.5.2 E(Nmat) and V(I’I"(Nmat)

Figure[3 and Figurgl6 respectively verify(N,,.:) and Var(N,,,:) as derived in Lemm@al4. Again, the
theoretical curves match the empirical ones and the cueeste change shapes at the point where the
occurrences of empty bins are more noticeable.

10

10"

10
k

0.1 0.1, 0.1 0.1,
RIGHTS--RESERVE Empirical Empirical CONTACT--INFORMA['ION
0.08 0.08] Theoretical 0.08 Theoretical 0.08]
"20.06 "2 0.06] "20.06
5 5 5
Z 4 Z
T 004 T 0.04 T 004
0.02 0.02) 0.02
OF--AND THIS-~HAVE ALL--MORE
0 0 0 0
100 10° 1193 10° 10° 100 10° 1193 10° 10° 100 10° 1183 10° 10° 100 10° 1193 10 10° 10°
0.1 0.1 0.1,
CREDIT--CARD RESEARCH--UNIERSITY — Empirical
0.08 0.08(| - - -Theoretical
2006 2006
5 5
4 =4 =4
w 0.04 o 0.04
0.02 0.02 0.02) 0.02)
MAY--ONLY SEARCH--WEB FREE--USE
0 0 0 0
100 10° 133 10* 10° 100 10° 133 10° 10° 100 10° 183 10° 10° 100 10° 133 10* 10° 100 10° 183 10° 10°
0.1 — 0.1 0.1
Empirical — Empirical REVIEW--PAPE|
heoretical 0.08}{ - - -Theoretical 0.08
"20.06
5
4 4
T 004
0.02 0.02|BOOK—-TRAVEL 0.02) 0.02)
TOP--BUSINESS TIME=-JOB A--TEST
4 5 G 1 3 4 5 o 1 2 3 4 5 G 1 2 3 4 5 o 1 2 3 4 5
10 10 10 10 10° 10 e 10 10 10 10° 10 e
Figure 3: E(Nemp)/k. The empirical curves essentially overlap the theoretaales as derived in

G 2 3
10 10
Lemmall, i.e.,[(Z0). The occurrences of empty bins becomieeadtle only at relatively large sample

10

10

sizek.
0 0 0 0
10 10 S 10 S 10 10
OF--AND .-~ THIS——HAVE .-~
107 ’rl 107 ," 107 ,’, 1071 107 ’:'
= . = / =N / = =% !
£ K £ ; £ / £ / £ H
13 3 ! 5 ! 3 , 5
z ; z : z : z : z ;
=2 ; =2 / = ! =2 ! =
g 10 200 " g 10 200 " g 10 200 : g 10 200 ,: g 10 200
' / K h
.: ! — Empirical H : 5 ,,f
-300 ——| -300 N R 9 ~300 ' ~300 ' ALL--MORH ~30(.
10 ; RIGHTS--RESERVED 10 ; Theoretical 10 o 10 o 10 CONTACT=~INFORMATION
100 100 100 10° 10 100 100 100 10' 10 100 100 100 10" 10 100 100 100 10° 10 100 100 100 10" 10
10° 10° — 10° - 10° -
FREE--USE -~
S /" |—Empirical o S
107 16 ; 1079 . - - - Theoretical 1™ s /
g / 5 ! g : g ! ,
g : g i = g /
= . s = _. K = ~ '
g 1072 ’,' g o] r>u 1072 ; g 1072 : :;
/ 10% | H h
/ CREDIT--CARD J g '
w0l MAY~--ONLY 107 SEARCH--WES] 107%] RESEARCH--UNIVERSIT L
. 100 10° 100 10° 10°
100 10° 100 10° 10° K 100 100 10° 10° 10° 100 10° 100 10° 10° 100 100 100 10° 10°
10° 10° 10° - 10° S
A--TEST .-
10—100 10—100 ,'I lo—mo 107100 ,’l
B B ,’ a -8 :'
£ ! £ i £ £ '
5 / 5 ; 5 5 /
Z ; z : z z :
g 10-200 ’,, g 10-200 " g 10-200 g 10’200 ",
B i I
107 ’,' TOP--BUSINESY 109} BOOK--TRAVEL| 107 ’/ TIME=-JOB REVIEW--PAPER 107 "'
100 10° 10° 100 100 100 10° 10 100 100 100 10" 10 100 100 100 10° 10 100 10°
Figure 4: Var(Nenmp)/k*. The empirical curves essentially overlap the theoreticaves as derived in

Lemmd1, i.e.,[(11).

11

—Empirical — Empirical —Empirical
0.8 0.8 - - -Theoretical 0.8 - - -Theoretical 0.8 - - -Theoretical
%06 "% 0.6 %06 "% 0.6]
£ € £ £
Z z z z
w 0.4 w 0.4 ~ w 0.4—————————\ w 0.4
0.2 0.2] 0.2 0.2] ~
RIGHTS--RESERVED OF--AND THIS--HAVE ALL--MORE CONTACT--INFORMATION
0 0 0
10t 100 10° 100° 10° 10t 100 10° 10° 10° 100 100 10° 10° 10° 10t 100 10° 100° 10° 100 100 10° 10* 10°
k k k k k
1 — 1 — 1 — 1 — 1 —
— Empirical — Empirical — Empirical — Empirical — Empirical
0.8 - - -Theoretical 0.8 - - -Theoretical 0.8 - - -Theoretical 0.8 - - -Theoretical 0.8 - - -Theoretical
%06 %06 % 0.6] %06 % 0.6]
£ £ £ £ £
Z Z < Z <
m 0.4 m 0.4 o 0.4 m 04 o 0.4
0.2 AN 0.2 0.2] ~ 0.2]
MAY--ONLY CREDIT--CARD SEARCH--WEB FREE--USE
0 0 0
100 100 100 10" 10° 100 100 100 10" 10° 100 100 100 10" 10° 100 100 100 10" 10° 100 100 100 10" 10°
k k k k k
— Empirical — Empirical —Empirical — Empirical A--TEST —Empirical
0.8 - - -Theoretical 0.8 - - -Theoretical 0.8 - - -Theoretical 0.8 - - -Theoretical 0.8 - - -Theoretical
%06 %06 "% 0.6 %06 "% 0.6]
£ £ € £ £
3 Z Z Z Z
w 04 w 04 w 0.4 w 04 w 0.4
REVIEW--PAPER
0.2 0.2 0.2] 0.2 0.2]
TOP--BUSINESS BOOK--TRAVEL ~— TIME--JOB ~ ———
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
10 10
k k k k k

Figure 5: E(Npqt)/k. The empirical curves essentially overlap the theoretalves as derived in
Lemmd4, i.e.,[(18).

10° 10° 10° 10° 10°
— Empirical CONTACT--INFORMATIO
- heoretical
~ 107 ~ 107 ~ 107 ~ 107
% % % %
£ £ £ £
£ £ £ £
3 3 3 3
> 107 > 107 > 107 > 107
1o RICHTS—RESERVED - OF—AND 1S THISTHAVE 1L ALLTMORE
ot 108 10° 10" 10° 100 100 100 10° 10 100 100 10° 10" 10 ot 108 10° 10 10°
10° 10° 10° 10°
i RESEARCH--UNIVERSIT!
~ 107 ~ 107 ~, 107
ZE ZE ZE
5 K 5
> 10" > 10" > 10"
10° MAY--ONLY 10° CREDIT--CARD 107 SEARCH--WEB 107 FREE--USE
100 10° 183 10° 10° 100 10° 183 10° 10° 100 10° 1:()3 10" 10 10° 10° 100 10° 1:()3 10" 10°
10° 10° - 10° - 10° 10°
Emp Empirical Empirical Empi
- - -Theoretical - - -Theoretical - - -Theoretical - - -Theoretical - - -Theoretical
~ 107 ~ 107 ~ 107 ~ 107 ~ 107
% % % % %
£ £ £ £ £
£ £ £ £ £
3 3 3 3 3
> 107 > 107 > 107 > 107 > 107
157°LTOP=-BUSINESS 179 BOOK —TRAVEL 18 TME-J08 100 REVIEW=—PAPER 1o L ATTTEST
100 100 100 10° 10 100 100 100 10° 10 100 100 10° 10" 10 100 100 100 10° 10 100 100 10° 10" 10
k k K k K

Figure 6: Var(N,..:)/k*. The empirical curves essentially overlap the theoreticaves as derived in
Lemmd3, i.e. [(19).

12

3.5.3 Cov(Nemp; Nimat)

To verify Lemmd5, Figurél7 presents the theoretical and eogpicovariances ofV,,,,, and N,,,,;. Note
thatCov (Nemp, Nimat) < 0 as shown in Lemmia 5.

x10° 1 10° x10° x10° x10°
0 — Empirical 0 0 0
p— i —~ - --Theoretical|| —~ N - N —~ N
¥ Emplrlcgl Y ¥ ‘ % o ¥,)
> - - -Theoretical >0 & > &
g g g g g
2 z 2 2 2° _g| CONTACT-—INFORMATION
3 gt] 3]
o g o o g — Empirical O _g ——Empirical o g — Empirical
0 RIGHTS—-RESERVED " OF--AND 0 THIS-=HAVE |- - -Theoretical 0 ALL--MORE |- - -Theoretical o - - -Theoretical
100 100 100 10° 10° 100 100 10° 10' 10° 100 100 10° 10° 10° 100 100 10° 10° 10° 100 100 10°
k k k k k
x10° x10° x10° x10° x10°
04\/ 0 0—\/ 0 0—_/
E 2 E 2 E -2 ~ E 2 E -2 ~
4 4 — irical 4 4 4
w4 = 4 Empirical w4 = 4 a4
H H - - -Theoretical £ H £
£ g € -6 € -6 i € -6[RESEARCH--UNIVERSITY < -6 !
o . o o L o o
o g o g o g — Empirical o g — Empirical o g —Empirical
0 MAY--ONLY |- - -Theoretical o CREDIT--CARD o SEARCH--wERL™ "~ Theoretical o - - -Theoretical 0 FREE--USE |- --Theoretical
100 10° 1193 10° 10° 100 10° 1193 10° 10° 100 10° 11?3 10° 10° 100 10° 1193 10° 10° 100 10° 11?3
x10° x10° 1% 10° x10° x10°
0 0 — Empirical 0 0
—~, S —~, \ / —~ - --Theoretical|| ~, Py
g - g -2 g o g -2 g -2
b4 b4 =z z 4
g g g g e
= TOP--BUSINESS = = z REVIEW--PAPER z
S S 6 S S s 6
o o o o T o
S —Empirical || O _g — Empirical o S S g — Empirical
1 - - -Theoretical 1 BOOK--TRAVEI - - - Theoretical 5 TIME--JOB 1 - - ~Theoretical i A--TEST - - -Theoretical
100 100 100 10° 10 100 100 10° 10° 10 100 100 100 10 10° 100 100 100 10° 10° 100 100 10°
k k k k K

Figure 7: Cov(Nemp, Nmat)/k?. The empirical curves essentially overlap the theoretitaves as de-
rived in Lemmdb, i.e.[(21). The experimental results alsaficm that the covariance is non-positive as
theoretically shown in Lemnid 5.

354 E(Rpa)and Var(Rima)

Finally, Figure[8 plots the empirical MSEs (MSE = bias variance) and the theoretical variandes] (24),
where the tern (ﬁ) is approximated bi_E(le,g as in [25).

The experimental results confirm LemMa 6: (i) the estim&tqy; is unbiased; (i) the variance formula
@4) and the approximatiofi (25) are accurate; (jii) theamre ofR,,,; is somewhat smaller thaR(1 —
R)/k, which is the variance of the originatpermutation minwise hashing, due to the “sample-without-
replacement” effect.

Remark: The empirical results presented in Figurés $1to 8 have glealidated the theoretical results
for our one permutation hashing scheme. Note that we did dadttlee empirical results of the original

k-permutation minwise hashing scheme because they wouldlysiowerlap the theoretical curves. The fact
that the originak-permutation scheme provides the unbiased estimat&with variance@ has been

well-validated in prior literature, for example [17].

5

— Empirical — Empirical —Empirical — Empirical —Empirical
107 - - -Theoretical 107 - - -Theoretical 107 - - -Theoretical 107 - - -Theoretical 107 - - -Theoretical
~ ——Minwise ~ ——Minwise ~ ——Minwise ~ ——Minwise ~ ——Minwise
£107° £107° £10° £107° £10°
@ @ x @ x
o s W s - W s P
» 10 » 10 n 10 » 10 n 10
= = = = =
10° 10° 107 10° 107
| RIGHTS--RESERVED _| THIS-——HAVE | ALL--MORE | CONTACT--INFORMATIO
10 1 2 3 4 5 10 1 2 3 4 5 10 1 2 3 4 5 10 1 2 3 4 5 10 1 2 3 4 5
10 10
k k k k k
107 — 107 — 10" — 107 — 10" —
— Empirical — Empirical — Empirical — Empirical — Empirical
107 - - -Theoretical 107 - - -Theoretical 1072 - - -Theoretical 107 - - -Theoretical 1072 - - -Theoretical
—~ ——Minwise —~ ——Minwise —_ ——Minwise —~ ——Minwise —_ ——Minwise
£10° £10° €107 £10° €107
« « S « S
@ 107 @ 107 @ 107 @ 107 @ 107
= = = = =
10° 10° 107 10° 107
10 MAY--ONLY 10 CREDIT--CARD 107 SEARCH—-WEB 107°{RESEARCH--UNIVERSIT 107 FREEZUSE
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
10 10 10 10 10 10 10 10 10 10 10 10’ 10 10 10 10 10 10 10 10 10 10’ 10 10 10
k k k k k
107 = 107 = 107 — 107 = 107 —
— Empirical — Empirical —Empirical — Empirical —Empirical
107 - - -Theoretical 107 - - -Theoretical 107 - - -Theoretical 107 - - -Theoretical 107 - - -Theoretical
~ ——Minwise ~ ——Minwise —~ ——Minwise ~ ——Minwise —~ ——Minwise
£107° £107° £10° £107° £10°
x @ x @ x
@ 107 @ 107 @ 10" @ 107 @ 10"
= = = = =
10° 10° 107 10° 107
_sl TOP--BUSINESS _o| BOOK--TRAVEL _| TIME--J0B _|REVIEW--PAPER)
10 10 10 10 10
100 100 10° 10 10° 100 100 10° 10 10° 10t 100 100 10 10° 100 100 10° 10 10° 10t 100 100 10 10°
k k k k k

Figure 8: M SE(]?mat), to verify the theoretical results of Lemrhf 6. Note that theoretical variance
curves use the approximatidn {25), for convenience. Theraxgntal results confirm that: (i) the estimator
Romat is unbiased, (i) the variance formu@{24) and the appragiom [25) are accurate; (jii) the variance
of Ryna: is somewhat smaller thaR(1 — R) /k, the variance of the origind-permutation minwise hashing.

4 Strategies for Dealing with Empty Bins

In general, we expect that empty bins should not occur ofe@abise” (Ne,,,,)/k ~ e~1/k which is very
close to zero iff /k > 5. (Recallf = |S1 U Ss|.) If the goal of using minwise hashing is for data reduction,
i.e., reducing the number of nonzeros, then we would expetift>> k& anyway.

Nevertheless, in applications where we need the estimtadye inner products, we need strategies to
deal with empty bins in case they occur. Fortunately, wazeal (in retrospect) simple strategy which can
be very nicely integrated with linear learning algorithnmsl gerforms very well.

Figure[9 plots the histogram of the numbers < 10°
of nonzeros in thewebspam dataset, which has ¢ Webspam
350,000 samples. The average number of nonzeros 3

is about 4000 which should be much larger than the
k (e.g., 200 to 500) for the hashing procedure. On

Frequency
N

the other hand, aboub% (or 2.8%) of the samples !
have<_ 500 (or < _200) nonzeros. Thus, we must 0 a0 2000 6000 BoomS5500
deal with empty bins if we do not want to exclude # nonzeros

those data points. For example,fif= k = 500, Figure 9: Histogram of the numbers of nonzeros in
then Ne,,, ~ e~//F = 0.3679, which is not small. thewebspam dataset (350,000 samples).

The first (obvious) idea isandom coding. That is, we simply replace an empty bin (i.e., “*” as in
Figure[1) with a random number. In terms of the original usbé@estimator?,,,,; = kN;(;af the ran-
dom coding scheme will almost not change the numerigs;. The drawback of random codmg is that the

denominator will effectively becomie. Of course, in most practical scenarios, we expégt, ~ 0 anyway.

14

The strategy we recommend for linear learningaso coding which is tightly coupled with the strategy
of hashed data expansidn [18] as reviewed inSet. 2.2. Méadsiwill be elaborated in Selc. 4.2. Basically,
we can encode “*” as “zero” in the expanded space, which maans will remain the same (after taking the
inner product in the expanded space). A very nice properthisfstrategy is that it isparsity-preserving
This strategy essentially corresponds to the following ifiredl estimator:

20 _

mat
mat —
\/k emp \/k emp

where]_fe(rl,zp = ZJ 1 IS}LM andNéwzp = Zf 1 Ie(n)w are the numbers of empty binsn.S;) andn(.Sz),
respectively. This modified estimator actually makes aiaemse, after some careful thinking.
Basically, since each data vector is processed and codadasely, we actually do not know,,,, (the

number ofjointly empty bins) until we see both(S;) andx(S2). In other words, we can not really com-
pute N, if we want to use linear estimators. On the other hanvféfn and Ne(nzp are always available.

(28)

In fact, the use of\/k — Ne(nzp\/k — Ne(nzp in the denominator corresponds to the normalizing step hwhic
is usually needed before feeding the data to a solver. Tlg will probably become more clear in Séc.14.2.

WhenNé},zp = Ne(,%zp = Nemp, (28) is equivalent to the origind%mat. When two original vectors are

very similar (e.g., largeR), Né}rzp andNéf,Zp will be close toN.,,,,. When two sets are highly unbalanced,
using [28) will likely overestimate?; however, in this casey,,.; will be so small that the absolute error
will not be large. In any case, we do not expect the existefiaammty bins will significantly affect the
performance in practical settings.

4.1 Them-Permutation Scheme withl < m < k

In case some readers would like to further (significanthjuee the chance of the occurrences of empty
bins, here we shall mention that one does not really haveitdlgtfollow “one permutation,” since one can
always conducin permutations withk’ = k/m and concatenate the hashed data. Once the preprocessing is
no longer the bottleneck, it matters less whether we userhytation or (e.g.,)n = 3 permutations. The
chance of having empty bins decreases exponentially witte@singmn.

4.2 An Example of The “Zero Coding” Strategy for Linear Learning

Sec[2.? has already reviewed the data-expansion straseghby [18] for integratingbtbit) minwise hash-

ing with linear learning. We will adopt a similar strategytvmodifications for considering empty bins.
We use a similar example as in SEC]2.2. Suppose we apply eypamutation hashing scheme and

usek = 4 bins. For the first data vector, the hashed valuegi&@ 3, 25964, 20191, x| (i.e., the 4-th bin

is empty). Suppose again we use- 2 bits. With the “zero coding” strategy, our procedure is slamaed

as follows:

Original hashed valueg: = 4) : 12013 25964 20191 *
Original binary representations 010111011101101 110010101101100 100111011011111 *
Lowestb = 2 binary digits: 01 00 11 *
Expanded’ = 4 binary digits : 0010 0001 1000 0000

1
New feature vector fed to a solver— x [0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0]

Vi—1

15

We apply the same procedure to all feature vectors in therdatax to generate a new data matrix. The

normalization factmﬁ varies, depending on the number of empty bins inittiefeature vector.
—Nerm

We believe zero coding ips an ideal strategy for dealing witipgy bins in the context of linear learning as
it is very convenient and produces accurate results (as Wsheiw by experiments). If we use the “random
coding” strategy (i.e., replacing a “*” by a random numbeftin2® — 1]), we need to add artificial nonzeros
(in the expanded space) and the normalizing factor is al\/%yé.e., no longer “sparsity-preserving”).

We apply both the zero coding and random coding strategighenwwebspam dataset, as presented in
Sec.[b Basically, both strategies produce similar resuéh evhenk = 512, although the zero coding
strategy is slightly better. We also compare the results e original k-permutation scheme. On the
webspam dataset, our one permutation scheme achieves similaréarsghtly better) accuracies compared
to the k-permutation scheme.

To test the robustness of one permutation hashing, we afseriexent with thenews20 dataset, which
has only 20,000 samples and 1,355,191 features, with mabaut 500 nonzeros per feature vector on
average. We purposely létbe as large a$096. Interestingly, the experimental results show that the zer
coding strategy can perform extremely well. The test aaiesaconsistently improve dsincreases. In
comparisons, the random coding strategy performs badssshlis small (e.g.k < 256).

On thenews20 dataset, our one permutation scheme actually outperfdmm®riginal k-permutation
scheme, quite noticeably whénis large. This should be due to the benefits from the “samjileouwt-
replacement” effect. One permutation hashing providesoa geatrix sparsification scheme without “dam-
aging” the original data matrix too much.

5 Experimental Results on the Webspam Dataset

The webspam dataset has 350,000 samples and 16,609,143 features. dzdahefvector has on average
about 4000 nonzeros; see Figlie 9. Following [18], we&i$¢ of samples for training and the remain-
ing 20% for testing. We conduct extensive experiments on linear SAfd logistic regression, using our
proposed one permutation hashing scheme with {2°,26, 27 28 29} andb € {1,2,4,6,8}. For conve-
nience, we us® = 224, which is divisible byk and is slightly larger than 16,609,143.

There is one regularization paramet@rin linear SVM and logistic regression. Since our purpose is
to demonstrate the effectiveness of our proposed hashivagrse, we simply provide the results for a wide
range ofC values and assume that the best performance is achievatdecibnduct cross-validations. This
way, interested readers may be able to easily reproducexpariments.

5.1 One Permutation v.s. k-Permutation

Figure[10 presents the test accuracies for both linear S\figgupanels) and logistic regression (bottom
panels). Clearly, wheh = 512 (or even 256) and = 8, b-bit one permutation hashing achieves similar test
accuracies as using the original data. Also, compared torigaal k-permutation scheme as in [18], our
one permutation scheme achieves similar (or even verytslipbtter) accuracies.

5.2 Preprocessing Time and Training Time

The preprocessing cost for processing the data usirg 512 independent permutations is about 6,000
seconds. In contrast, the processing cost for the proposedbermutation scheme is only'k of the

original cost, i.e., about 10 seconds. Note tvabspam is merely a small dataset compared to industrial
applications. We expect the (absolute) improvement wikten more substantial in much larger datasets.

16

98] PR ——b= 98 b=8_ =5 98
96 = 96 - =4 96
> 92 > 92 > > - ¢-Original > 92¢ /% :|- ¢ -Original
© 90| bes © 90| <] © 90| —1Perm s 90 —1Perm
§ 33/___......_....-_..._..... § 88| bo1 § § 88| ---k Perm § 88 ‘|---k Perm
< 86 A < 86 _o===== < < 86 I 86
SVM: k =32 L=~
3‘2‘ Webspam: Accuracy gg SUM: k= 64 gg SVM: k=128 gg SVM: k = 256 gg SVM: k=512
80.’-""“ b=1 80 Webspam: Accuracy 80 Webspam: Accurac! 80 Webspam: Accuracy 80 Webspam: Accurac!
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2 -3 -2 -1 0 1 2 -3 -2 -1 0 1 2 -3 -2 -1 0 1 2
10 10
C C (o} C (o}
100 100
98 98

- ¢-Original
—1Perm
---k Perm

- ¢-Original
—1Perm
---k Perm

Accuracy (%)
Accuracy (%)
Accuracy (%)
Accuracy (%)
©
Q.
Accuracy (%)

86
84 logit: k = 32

Webspam: Accuracy e logit: k = 64
82 - 82 W .
b= ebspam; Accuracy

logit: k=128
Webspam: Accurac

logit: k = 256
Webspam: Accuracy

logit: k =512
Webspam: Accurac

-3 -2 -1 0 1 2 -3 2 2 3 2

10° 107 10 R 10° 10° 10 10° 10° 10'1c 10° 10° 10 10° 10° 10"C 10° 100 107 10° 107 10"c 10° 100 107 10° 107 10"C 10° 100 107
Figure 10: Test accuracies of SVM (upper panels) and lagisgiression (bottom panels), averaged over 50
repetitions. The accuracies of using the original data kriégol as dashed (red, if color is available) curves
with “diamond” markers. C' is the regularization parameter. Compared with the orlginpermutation
minwise hashing scheme (dashed and blue if color is avajalihe proposed one permutation hashing
scheme achieves very similar accuracies, or even sligbttgibaccuracies whéhnis large.

The prior work [18] already presented the training time ggime k-permutation hashing scheme. With
one permutation hashing, the training time remains esdnthe same (for the samie and b) on the
webspam dataset. Note that, with the zero coding strategy, the néswdatrix generated by one permutation
hashing has potentially less nonzeros than the originalvimanhashing scheme, due to the occurrences of
empty bins. This phenomenon in theory may bring additiomsfaatages such as slightly reducing the
training time. Nevertheless, the most significant advantafgone permutation hashing lies in the dramatic
reduction of the preprocessing cost, which is what we focus ¢his study.

5.3 Zero Coding v.s. Random Coding for Empty Bins

The experimental results as shown in Figuré 10 are basedeotzéino coding” strategy for dealing with
empty bins. FigureZ11 plots the results for comparing zedirgpwith the random coding. Wheéhis large,
zero coding is superior to random coding, although the diffees remain small in this dataset. This is not
surprising, of course. Random coding adds artificial narzéo the new (expanded) data matrix, which
would not be desirable for learning algorithms.

Remark: The empirical results on theebspam datasets are highly encouraging because they verify that
our proposed one permutation hashing scheme works as wlt asen slightly better than) the original
k-permutation scheme, at merelyk of the original preprocessing cost. On the other hand, itlivbe
more interesting, from the perspective of testing the rotass of our algorithm, to conduct experiments on
a dataset where the empty bins will occur much more frequentl

6 Experimental Results on the News20 Dataset

The news20 dataset (with 20,000 samples and 1,355,191 features) isyasu@all dataset in not-too-high

dimensions. The average number of nonzeros per featurerieabout 500, which is also small. There-
fore, this is more like a contrived example and we use it jostdrify that our one permutation scheme
(with the zero coding strategy) still works very well evenemhwe letk be as large as 4096 (i.e., most of
the bins are empty). In fact, the one permutation schemeas\eashnoticeably better accuracies than the

17

2

poy b=8
% -
5 g b=2 5 5 5 g —Zero Code 5 g —Zero Code
8 ~ 8 3 8 ---Rand Code || & ---Rand Code
< 8§ SVM: k =32 < < < 8§ < &
84 Webspam: Accuracy 84 SVM: k = 64 84 SVM: k=128 84 SVM: k = 256 84 SVM: k =512
82 82 K 82| R 82 K 82| N
Webspam: Accuracy Webspam: Accurac! Webspam: Accuracy Webspam: Accurac!
80 -3 -2 -1 0 1 2 80 -3 -2 -1 0 1 2 80 -3 2 -1 0 1 2 80 -3 -2 -1 0 1 2
10 10
(o}
100 100
98 PFEOE =" b4 98 PEAS L =
96 96|
g g S g o4 g o
Iy 2 > 3 92 > 92
[[g g 9 g 90 I
3 3 3 3 88 —Zero Code 3 gsl, —Zero Code
2 2 2 2 2
< 86 logit: k = 32 < £ £ 86 ---RandCode|| £ g6 ---Rand Code
84 Websparn: Accuracy logit: k = 64 84 logit: k = 128 84 logit: k = 256 84 logit: k = 512
82 — R 82 ; 82 R 82 ;
80 e e 80 Webspam: Accuracy 80 Webspam: Accurac! 80 Webspam: Accuracy 80 Webspam: Accurac!
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2 -3 -2 -1 0 1 2 -3 -2 -1 0 1 2 -3 -2 -1 0 1
10 10
C C C C C

Figure 11: Test accuracies of SVM (upper panels) and lagistiression (bottom panels), averaged over 50
repetitions, for comparing the (recommended) zero codirmgeg)y with the random coding strategy to deal
with empty bins. We can see that the differences only becatieaable at = 512.

original k-permutation scheme. We believe this is because the oneupsiam scheme is “sample-without-
replacement” and provides a much better matrix sparsificairategy without “contaminating” the original
data matrix too much.

6.1 One Permutation v.s. k-Permutation

We experiment withk: € {23, 24,25 26 27 28 29 210 911 2121 andp € {1,2, 4, 6,8}, for both one permu-
tation scheme ank-permutation scheme. We use 10,000 samples for traininghenokher 10,000 samples
for testing. For convenience, we 1Bt = 22! (which is larger than 1,355,191).
Figure[12 and Figurle 13 present the test accuracies for IBé& and logistic regression, respectively.
Whenk is small (e.g.k < 64) both the one permutation scheme and the origknpermutation scheme
perform similarly. For largelk values (especially as > 256), however, our one permutation scheme
noticeably outperforms thg-permutation scheme. Using the original data, the testracas are about
98%. Our one permutation scheme with> 512 andb = 8 essentially achieves the original test accuracies,
while the k-permutation scheme could only reach ab@ut% even withk = 4096.

100, P Y S S 100, P R e = 100, IS S0 To-00- -4 3 D & $30806-06- - - ¢ - - - - -
95| .0 ** - ¢-Original 95[¢ #* SUM: k= 16 95 ¢ 0¥y -
. b=8
—_ gg —1Perm —_ gg News20: Accuracy | gg — -
5 ---kPerm | £ e & b=6 5 &
> 80 bog > 80| = 80/_,...—.-.-.-.--——.-.-.-.-.-.-.-.-.-. > S
8 75 S 75 _—bse o1 875 b4] I
3 70 bo6 SVM: k=8 3 70 - g Tor— | 5 3
< 65 b=4 News20:Accuracy | < GS—T\ < 65 b=2 2 2
60 60 = 60, p T 60 60,
— P I et VT V3 728 et SVM: k = 64 SVM: k = 128
55 55 55 : 55 News20: Accurac 55 News20: A
50 P=1T 50 50 News20: Accurac 50 i Y 50 ews. Geuracy
-1 0 1 2 3 -1 0 1 2 3 -1 0 1 2 3 -1 1 2 3 -1 0 1 2 3
10 10
C C c C c
100,
95
S g0 S g0 5 S g0 - ¢~ Original | S
g g g . g —1ipem | §
<75 <75 <75 <75 c--kPerm | <
L S . SVM: k=256 70 SVM: k =512 70 SVM: k =1024 70 SVM: k = 2048 70 SVM: k = 4096
65 News20: ACCUI’éCV 65 News20: Accurac 65 News20: Accuracy 65 News20: Accurac 65 News20: Accuracy
10" 10° 100 10° 10° 10° 10° 100 10° 10° 10" 10° 100 10°0 10°®° 100 10° 100 100 10° 100 10° 100 10° 10°
¢} [¢] ¢ [¢] ¢

Figure 12: Test accuracies of linear SVM averaged over 1pétiteons. The proposed one permutation
scheme noticeably outperforms the origikgbermutation scheme especially wheis not small.

18

100 100 100

00 00-00- -6~ & - - - - - 0080000- - -8 - - - -~ 0 00R 0o -6 8- -- 3

95 et o 95 L
go-¢* ;Orlglnal 9o} -¢ o0b-¢* b=

< 85 1Perm | < gg b=g S 85 g

< 80 ---kPerm | T gg < 80 Lt =

> b-g > > 80— S

© 75| © 75| b=6 g 75 b=4 IS

g 79 boo logit k=8 g 79 poalogit k=16 g 1o 3

< gg b=g News20: Accuracy | < gg L, News20: Accuracy | < Zg b2 < o0l T 0
55 — 55 — 55 521 109t K= 32 55 logit: k = 64 55 logit: k = 128

p=1 _ News20: Accuracy News20: Accuracy News20: Accuracy
50 -1 0 1 2 3 50 -1 0 1 2 3 50 -1 0 1 2 3 50 -1 0 1 2 3 50 -1 0 1 2 3
10 10
C (03 (o} C (o}

> > = = > 85p7 .77 - ¢ -Original
o o %) o - %) -
© © el © - P @ —_—
E E s S sof- -o-originall S g 1 perm
8 8 8 8 —ipem|| § ---k Perm
< < < < 75 ce<kperm || < 75
k= 70| logit: k =512 70 logit: k = 1024 70| logit: k = 2048 70 logit: k = 4096
65 News20: Accurac 65 News20: Accurac 65 News20: Accuracy 65 News20: Accurac 65 News20: Accuracy
10" 10° 100 108 10 10" 10° 100 108 10 10" 10° 100 100 10 10" 10° 100 108 10° 10" 10° 100 100 10°
C C c C c

Figure 13: Test accuracies of logistic regression averaged100 repetitions. The proposed one permuta-
tion scheme noticeably outperforms the origihgbermutation scheme especially wheis not small.

6.2 Zero Coding v.s. Random Coding for Empty Bins

Figure[14 and Figure_15 plot the results for comparing twoirmpdtrategies to deal with empty bins,
respectively for linear SVM and logistic regression. Agaimenk is small (e.g.k < 64), both strategies
perform similarly. However, wheh is large, using the random coding scheme may be disastrdush s

of course also expected. Whén= 4096, most of the nonzero entries in the new expanded data mattix f
to the solver are artificial, since the origingws20 dataset has merely aboki0 nonzero on average.

95, —Zero Code 95 —Zero Code 95 SVM: k =32
90 - --Rand Code 90 ---Rand Code 90 p=g _News20: Accuracy

S 85 < 85 b=8 < 85 bt g
> 8 s 5 80 SVM: k=16 5 80 et &
8 75— "SUM k=8] & 75 b=6News20: Accuracy & 75 bea ©
3 70 b=6 News20: Accuracy { 3 70| 3 o——HE———— | 3
8 —_— | 8 b=4 3 1]
< 65 b=4 < 65 oo — <L ___pe2 1<
60 — 60 = 60| 60|
b=2 D S | g 60 SVM: k = 64 SVM: k = 128
55| 55| — 55 55 : 55 -
b=1 b=1 News20: Accuracy News20: Accuracy
50 -1 0 1 2 3 50 -1 0 1 2 3 50 -1 0 1 2 3 50 -1 0 1 2 3 50 -1 0 1 2 3
10 10
(03 (03 (o} [} (o}

Accuracy (%)
Accuracy (%)
Accuracy (%)
Accuracy (%)

Lo News20: Accuracy

65 65 65 65
= = -1 1 2

-
= 657
10 10 10 10 10 10 10° 100 100 10 10 10° 10 10 10° 10 10° 100 10 10° 10" 10° 100 100 10

1 0 1 2 3 1 1

[} [} C [} C
Figure 14: Test accuracies of linear SVM averaged over 10étiteons, for comparing the (recommended)
zero coding strategy with the random coding strategy to dithl empty bins. On this dataset, the perfor-
mance of the random coding strategy can be bad.

Remark: We should re-iterate that theews20 dataset is more like a contrived example, merely for testing
the robustness of the one permutation scheme with the zelioggtrategy. In more realistic industrial
applications, we expect that numbers of nonzeros in marasdtt should be significantly higher, and hence
the performance differences between the one permutatioense and thé&-permutation scheme and the
differences between the two strategies for empty bins shioeilsmall.

19

95 —Zero Code 95 —Zero Code

90 ---Rand Code 90 ---Rand Code
g g 85 b=8

80/1/-'-‘—-'#’

b=6

b=8

Accuracy (%
~
a
Accuracy (%
~
a
Accuracy (%)
Accuracy (%)
Accuracy (%)

70 b=6 logit k=8 70 boa logit k=16
65 B] 65 -

b=4 News20: Accurac .
60 os 60 p=2 News20: Accuracy 60 y 60 e
55 =2 55 - 55 5=1 logit k=32 55, logit: k = 64 55 logit: k = 128

b=T b= News20: Accurac News20: Accuracy News20: Accuracy
50 -1 0 1 2 3 50 -1 0 1 2 3 50 -1 0 1 2 3 50 -1 0 1 2 3 50 -1 0 1 2 3
10 10

C (03 (o} C (o}

80 . logit: k = 1024

Accuracy (%)

—Zero Code 80f-71- —Zero Code
-~-._ |---Rand Code PR ~-._ |---Rand Code

Accuracy (%)
Accuracy (%)
Accuracy (%)
Accuracy (%)

75 ~-\~N~eyv~s~2‘0: Accuracy 75F" il
L R e TopTT - --logit; k = 2048-~ - - 707 < logit K= 3096
65! 65 News20: Accurac News20: Atcuracy | N&ws20: Accurac!

65 65 65
1 2 3 1 3 -1 0 1 2 = =

10 10° 1co1 10 10 10 10° 1co1 100 10 10 10 18 10 10° 10 10° 1co1 100 10° 10" 10° 181 100 10°
Figure 15: Test accuracies of logistic regression averamyed 100 repetitions, for comparing the zero
coding strategy (recommended) with the random codingesjyato deal with empty bins. On this dataset,

the performance of the random coding strategy can be bad.

7 The Variable Length One Permutation Hashing Scheme

While the fixed-length one permutation scheme we have predeand analyzed should be simple to
implement and easy to understand, we would like to presemtiable-length scheme which may more
obviously connect with other known hashing methods sucha€bunt-Min (CM) sketcH [6].

As in the fixed-length scheme, we first conduct a permutatiof? — €. Instead of dividing the space
evenly, we vary the bin lengths according to a multinomiatributionmult (D, 1, %, ..., +).

This variable-length scheme is equivalent to first unifgrgrouping the original data entries inkdoins
and then applying permutations independently within eachThe latter explanation connects our method
with the Count-Min (CM) sketch_[6] (but without the “countimi step), which also hashes the elements
uniformly to k£ bins and the final (stored) hashed value in each bin is the $aththe elements in the bin.
The bias of the CM estimate can be removed by subtractingra §20] adopted the CM sketch for linear
learning. Later,[[24] proposed a novel idea (named “VW")@gmove the bias, by pre-multiplying (element-
wise) the original data vectors with a random vector whoddesnare sampled i.i.d. from the two-point
distribution in{—1, 1} with equal probabilities. In a recent papér,|[18] showed tha variance of the CM
sketch and variants are equivalent to the variance of rangtojactions [[16], which is substantially larger
than the variance of the minwise hashing when the data aagybin

Since [18] has already conducted (theoretical and empimcenparisons with CM and VW methods,
we do not include more comparisons in this paper. Insteacave simply showed that with one permuta-
tion only, we are able to achieve essentially the same acg@susing: permutations.

We believe the fixed-length scheme is more convenient toempht. Nevertheless, we would like to
present some theoretical results for the variable-lengfikerae, for better understanding the differences. The
major difference is the distribution d¥.,,,, the number of jointly empty bins.

Lemma 8 Under the variable-length scheme,

E(Nemp) _< 1)f1+f2—a

A (29)

20

Var g;femp) :% (E(J\]lemp)) (1 B W) (30)
- (1 - %) <(1 - %)Q(flﬁ-fz—a) - (1 - %).fﬁ-fz—a)
) (- 25)

Proof: See AppendixHl O

The other theoretical results for the fixed-length schemielwvare expressed in termi.,,,,, essentially
hold for the variable-length scheme. For exam|%léfM is still an unbiased estimator @ and its vari-
ance is in the same form ds{24) in terms\af,,,,.

Remark: The number of empty bins for the variable-length schemeesgmted i (29) is actually an upper
bound of the number of empty bins for the fixed length schenmghawn in [10). The difference between

Hf ! M and (1 —)f (recall f = f1 + f2 — a) is small when the data are sparse, as shown in

JR O D
Lemmd2, although it is possible thﬁ[tf;é 13(1[)7_%_)] < (1- %)f in corner cases. Because smalléy,,,,
implies potentially better performance, we conclude thatfixed-length scheme should be sufficient and
there are perhaps no practical needs to use the varialgtileoheme.

8 Conclusion

A new hashing algorithm is developed for large-scale seanchiearning in massive binary data. Compared
with the originalk-permutation (e.g% = 500) minwise hashing algorithm (which is the standard procedur
in the context of search), our method requires only one pttion and can achieve similar or even better
accuracies at merely/k of the original preprocessing cost. We expect that our ppegalgorithm (or its
variant) will be adopted in practice.

References

[1] Alexandr Andoni and Piotr Indyk. Near-optimal hashifgaithms for approximate nearest neighbor
in high dimensions. Commun. ACM, volume 51, pages 117-122, 2008.

[2] Leon Bottou. http://leon.bottou.org/projects/sgd.

[3] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Nael Mitzenmacher. Min-wise independent
permutations (extended abstract). SFOC, pages 327-336, Dallas, TX, 1998.

[4] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse,@eoffrey Zweig. Syntactic clustering
of the web. InWMWV, pages 1157 — 1166, Santa Clara, CA, 1997.

[5] J. Lawrence Carter and Mark N. Wegman. Universal clas$éssh functions (extended abstract). In
STOC, pages 106-112, 1977.

[6] Graham Cormode and S. Muthukrishnan. An improved datast summary: the count-min sketch
and its applicationsJournal of Algorithm, 55(1):58-75, 2005.

[7] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Ruing/aand Chih-Jen Lin. Liblinear: A
library for large linear classificationlournal of Machine Learning Research, 9:1871-1874, 2008.

21

http://leon.bottou.org/projects/sgd

[8] Dennis Fetterly, Mark Manasse, Marc Najork, and Jan&Viener. A large-scale study of the evolution
of web pages. IMMWW, pages 669-678, Budapest, Hungary, 2003.

[9] Jerome H. Friedman, F. Baskett, and L. Shustek. An dlgorifor finding nearest neighborsEEE
Transactions on Computers, 24:1000-1006, 1975.

[10] Izrail S. Gradshteyn and losif M. Ryzhiklable of Integrals, Series, and Products. Academic Press,
New York, sixth edition, 2000.

[11] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Satheerthi, and S. Sundararajan. A dual coor-
dinate descent method for large-scale linear svniProteedings of the 25th international conference
on Machine learning, ICML, pages 408-415, 2008.

[12] Piotr Indyk and Rajeev Motwani. Approximate nearesighbors: Towards removing the curse of
dimensionality. INSTOC, pages 604-613, Dallas, TX, 1998.

[13] Thorsten Joachims. Training linear svms in linear titmeKDD, pages 217-226, Pittsburgh, PA, 2006.

[14] Ping Li and Kenneth W. Church. Using sketches to eseénastsociations. [RHLT/EMNLP, pages
708-715, Vancouver, BC, Canada, 2005 (The full paper apgagarCommputational Linguistics in
2007).

[15] Ping Li, Kenneth W. Church, and Trevor J. Hastie. Oneakdor all: Theory and applications of
conditional random sampling. INIPS (Preliminary results appeared in NIPS 2006), Vancouver, BC,
Canada, 2008.

[16] Ping Li, Trevor J. Hastie, and Kenneth W. Church. Vergrsg random projections. KDD, pages
287-296, Philadelphia, PA, 2006.

[17] Ping Li and Arnd Christian Konig. Theory and applicats b-bit minwise hashingCommun. ACM,
2011.

[18] Ping Li, Anshumali Shrivastava, Joshua Moore, and A@fdlistian Konig. Hashing algorithms for
large-scale learning. INIPS Granada, Spain, 2011.

[19] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srétegasos: Primal estimated sub-gradient solver
for svm. InICML, pages 807-814, Corvalis, Oregon, 2007.

[20] Qinfeng Shi, James Petterson, Gideon Dror, John Ladg#lex Smola, and S.V.N. Vishwanathan.
Hash kernels for structured datdournal of Machine Learning Research, 10:2615-2637, 2009.

[21] Anshumali Shrivastava and Ping Li. Fast near neighlearch in high-dimensional binary data. In
ECML, 2012.

[22] Josef Sivic and Andrew Zisserman. Video google: a tewtieval approach to object matching in
videos. InICCV, 2003.

[23] Simon Tong. Lessons learned developing a practicajelascale machine learning system.
http://googleresearch.blogspot.com/2010/04/lessmmsied-developing-practical.html, 2008.

[24] Kilian Weinberger, Anirban Dasgupta, John LangfordeXASmola, and Josh Attenberg. Feature hash-
ing for large scale multitask learning. IGML, pages 1113-1120, 2009.

22

http://googleresearch.blogspot.com/2010/04/lessons-learned-developing-practi

A Proof of Lemmal(l

Recall N¢p,, = Z?leemp,j, where I, ; = 1 if, in the j-th bin, both7(S;) and 7(S) are empty,
and I, ; = 0 otherwise. Also recalD = |Q|, fi = [S1], fo = |S2|, a = [S1 N Sa|. Obviously, if
D (1 — —) < fi + f2 — a, then none of the bins will be jointly empty, i.€(Neymp) = Var(Nepmp) = 0.
Next, assumeé) (1 — —) > f1+ fo — a, then by the linearity of expectation,

k (D(l—%)) htf=a=1 p)
“a — %)~
E (Newp) = Y Pr (Ieppj = 1) = kPr (Lopypy = 1) = k-H2=0 — (D—_)
s (f14fo-a) =0 J
To derive the variance, we first assutbg1 — %) > fi+ fa—a. Then
Var (emp) =FE (Ne2mp) E? (Nemp)
=F (ji: en”3j4‘j£:lénmz mnpj) _'IEZ(AknuJ
i#]
=k(k —)Pr (Iemp1 = 1, Temp2 = 1) + E (Nemp) — E* (Nemp)
fitfa—a—1 2 .
D(1—-%)—j
=k(k —1) x — K-
ko I =55
j_
2
fitfz—a—1 1 . fitfa—a—1 1 .
D(1—-14)—j D(1—-3)—3j
k i S VA —\ kY
+ Kk X jl;[o D (X jl;[o D

fD(1-2)<fi+fo—a<D(1-1), thenPr (lepp1 =1, Lemp2 = 1) = 0 and hence
=0 =0

2
fitfa—a—1 1 - fit+fa—a—1 1 .
E D{1—-¢)—J D(1—2%)—j
Var (Nemp) = E (Newp) = B2 (Newp) =k x - [] %_ (k‘x [PUg) s Dkg)

AssumingD (1 — 2) > f1 + f» — a, we obtain

Var (New) _L (" 20 =3\ (| " 200 -
k2 B\ D—j | D—j

Jj=0 7=0
2
~(1-3) fl”ﬁ“D(I I U R
k j:O D—j o D—j
k
. f1+]i2_[a lD %)_] f1+1ﬁa—1D(1_)_]
D—j D—j
7=0 7=0
l 12 emp EWW
<k(: >(1)

23

because

2
:»(1—%) -

This completes the proof.

B Proof of Lemmal2

The following expansions will be useful

] 1 1

L 0577216 — — — — 4 .. ,8.367.13 32

; - =logn + o "1t ([0] (32)
2 3

log(l —2) = —z — % - % — (|z| < 1) (33)

AssumeD (1 — 1) > fi + f2 — a. We can write

B RO ())

k o D—j k o (k—1)(D—7)

Hence it suffices to study the error term

i (1 - FHo- j)) |

j=0
fit+fa—a—1 . fit+fo—a—1 .
J _ oo (10— J

e 11 (- =05 - 2 oz (1~ =557

fitfe—a—-1 . 2 3
_ J 1 J 1 J
> { F-1(D-j) 2 <<k— 1><D—j>> 3 <<k—1><D—j>> ! }

Take the first term,
fitfe—a—1 . fitfe—a—1 .
J 1 D—j D

2 k-D(D—j) k-1 2 D—j D—j

J=0

1 fitfe—a—1 1
-1 fitfe—a-D Z D—j

=0
1 D 1 D_fl_f2+a1
=71 hi+fa—a—D Z;— Z S
7=1 7j=1
1 1 1
:m<f1+f2—a—D<log(D+1)—m—log(D—fl—f2+a+1)+2(D_f1_f2+a+1)>+...>

24

Thus, we obtain (by ignoring a terg~)

f1+f2]ja—1 1 j . —D log % + (fl + f2 - a) (1 - m) n
- Y =< = ex
o k—1)(D —) P k1

Assumingf; + fo — a < D, we can further expantbg % and obtain a more simplified
approximation:

= (1-3) (o (2))

Next, we analyze the approximation of the variance by assgmi + fo — a < D. A similar analysis
can show that

itk el p(1-2) - 2\ /1 /e (f1 + fo—a)’
I =5 :<1_E> (1_O< kD >>

J=0
and hence we obtain, by using- 2 = (1 — 1) (1 — L)

Var (Nemp)
L2

9 fi+fa—a 1 2(f1+f2—a) 1
=(1—— —(1—-= + —
k k k
fi+f2—a fi+fa—a
L1 (11
k k k
(i l fi+fa—a+1 - l fitfa—a (4 1 Sit+fa—a o (fr+ fo— a)2
k k k—1 kD

C Proof of Lemmal[3

Letq(D,k, f) = Pr(Nemp = 0) andD;, = D(1 — j/k). Then,

) k
Pr (Nemp =]) :<j>P{[emp,l == Iemp,j = 17[emp,j+1 == Iemp,k = O}
P

k .

wherePf is the “permutation” operato®f’ = D(D — 1)(D — 2)...(D — f +1).
Thus, to derivéPr (N, = j), we just need to find(D, k, f). By the union-intersection formula,

J
1—q D k f = Z <k> Hlemp,i-

Jj=1

25

From Lemmdll, we can infef [T/, Ly = P /PP = T]1=) M Thus we find

D—
k D k Dj
K\ Py K\ Py
q(D,k-,f)=1+Z(—1)ﬂ<.> -3 (1 () |
7j=1 J 7=0 J f
It follows that
k—j ~ pD(—j/k—s/k)
k P,
e
k _its) _
> IR
g Jlsl(k —]—s' D—t

D Proof of Lemmald

Define

Sl U 52 = {j17j27 -'-7jf1+f2—a}

J =min7(S; U Ss) = 1<i<%i—?f2—aﬂ-(ji)

T = argmin =(j;), i.e.,w(jr) =J
7
Becauser is a random permutation, we know

Pr (T = i) = Pr (jr = ji) = Pr (x(jr) = 7(js)) = J1<i<fith-a

1
it fo—a
Due to symmetry,

1
Pr(I'=iJ=t)=P i) =1 i) =1t) = ————
oI =ilJ =t) =Pr(r(j) =t| _ min () =1) [y —

and hence we know thatandT are independent. Therefore,

k
E(Nmat) = > Pr(Inar; = 1) = kPr(Tpars = 1)
j=1
:kPI‘(jT €51 NS,0<JL D/k— 1)
:kPI‘(jT €5 ﬂSQ)PI‘(O <J<L D/k — 1)
=kRPr (Ieyp1 = 0)

=kR <1 _ EWemp) (iemp)>

2
E(mat = ((Zlmat,])) = (Zlmat,y"i'zlmatz mat,y)
i#£]

:E(Nmat) + k(k - 1)E([mat,1[mat,2)

26

E([mat,llmatQ) =Pr (Imat,l - 17[mat,2 - 1)
D/k—1
= > Pr(Ipeta =1, Ina2 =1|J =t)Pr(J =1)
t=0
D/k—1
= > Pr(jr € S10 82, Inarz = 1|7 =) Pr(J = 1)
t=0
D/k—1
= > Pr(Ipma=1|J =t.jr € $10S) Pr(jr € S1 N S2) Pr(J =1)
t=0
D/k—1
=R Y Pr(Inaz=11J =t jr € $iNS)Pr(J =1t
t=0

Note that, conditioning ojJ = t,jr € S; N S2}, the problem (i.e., the evedt,, .2 = 1}) is actually
the same as our original problem wifh + f» — a — 1 elements whose locations are uniformly random on
{t+1,t+2,....,D — 1}. Therefore,

E(Imat,llmat,2)
D/k—-1 fi+fa—a—2 1 :
—1 D(1-%)—t—1-
=Ry — (1~ (%)) Pr(J=1)
e fitfa—a—1 D—t—1—]
a—1 DglP f1+f2 - 2D(1—%)—t—1—j
v r(:
h+fo—a-1 & D—t—1—j
D/k—l D/k 1 fi+fa—a—2 1 .
a—1 D(1—-7)—-t—1—3
R Pr(J=t)— Pr(J=t k :
Frhoe | X P z N =
By observing that
D—t—1 -1 . +fo—a—1 .
Pr(J =) — (54 foma1) :f1+f2—at1—ID—f1—f2+a—J :flJrfz—af1]ii[D—-t—y
(f+1]2_) D o D—-1-j D it D—j
1 2—a J]= Jj=
D/k—1 fit+fe—a—1
E (Nemp) D(1-1%)—j
Z Pr(J=t)=1-Pr(Igpp1=1)=1—- —2 =1 H B
t=0 k §=0 D—j
we obtain two interesting (combinatorial) identities
Dk 1¢—1 . +fo—a—1 .
f1+f2 /Z:hD fi— f2+a—]:1_flji2—[D(—7)—j
D—-1-j) D—j
t=0 5=0 7=0
D/k—1 f1+ a—1 X +fo—a—1 .
f1+f2—a /E:fljiz—[D—t—]zl_ﬁﬁ D(1-¢)—j
D—j o D—j

27

which helps us simplify the expression:

D/k‘—l fi+fa—a—2 1 .
_ DO-P-t-1-,
ZPF(‘]— H D—t—1—j
Dg:lfl+f2—aﬁﬂﬁa_lD—t—jflﬂﬁa_zD(l—%) —t—1-j
e D—j 0 D—t—1—3
Dgzlfl-i-fz—afﬁfﬁa_ll)(l_%) —l—J
N D] D—3j
7j=1
2D/k 1 fit+fr—a—1 . DJ/k—1 fit+fo—a—1 .
f1+f2—a D—t— fl—l-fz—a D—t—j
> 11 > II 5=
Jj=1 j=1
I I R 1_f”ﬁ“‘1D<1—%> =
B , D—j , D—j
Jj=0 7=0
- f1+f21_j:a—1 D (1 _ _) _j . f1+f21_ia—1 D (1 _ _) —j
j=0 D=J j=0 D=1
Combining the results, we obtain
E(Imat,llmat,2)
B a—1 f1+f21_ia—1 D (1 _ %) —j . f1+1ﬁa—1 D (1 _ %) —j f1+]ﬁa—l D
fi+tfo—a—-1 =0 D—j i=0 D—j =0
fi+fa—a—1 1\, Nitfa—a—d 2\
a1l 1-9 H M + H M
fitfa—a—1 - D—j - D—j
Jj= Jj=
And hence
VaT(Nmat) - k(k - 1)E([mat,1[mat,2) + E(Nmat) - E2(Nmat)
fitfo—a—1 1 . fitfe—a—1 2 .
o-1 D)~ D(-)-
=k(k—-1R 1-2 - + -
() fitfo—a—1].130 D —j].1;[0 D—y
2
fit+fa—a—1 1 . fit+fe—a—1
D(1-1)—; D(1-1)—;
+kR|[1- —— K) _kR*|1- K -
3'1;[0 D—j],1;[0 D—j

28

(-} -

Var(Npmat)
k2

() (- 2)

fit+fo—a—1 1y . hitf—a-l oy
11>Ral<12 H l)(—’f)]+ D(lk)])

< k) hitfa—a—1 s D 15 D
2
fitfa—a—1
k i D — j
1 E(Nmat) E(Nmat)
<k< k)(1 k
2
fitfa—a—l 1 fit+fa—a—1 1
! D(—-3)—J DA-1)—;
1-—|R*|[1-2 k k
+< k>R(HO i Uo D~
j= j=
2
fit+fo—a—1
— 1—l R? 1_1 12_[D(1—7)—j
k i D —j

() ()

— 1 o angP0-E) (2015
To see the inequality, note that5—-— < R = 75—, and—52— < - as proved
towards the end of Appendix]A. This completes the proof.

E Proof of Lemmal3

k k k
FE (NmatNemp) =F Z Imat,j Z IempJ = Z E (Imat,jlemp,j) + Z F (Imat,ilemp,j)
Jj=1 J=1 j=1 i#j
=0+ 3" B (InatiTemp.s) = k(k = 1)E (TLomp,1 Ima.2)

i
E(Iemp,llmat,z) =Pr (Iemp,l = 17[mat,2 = 1) =Pr ([mat,Z - 1‘[emp,l - 1) Pr (Iemp,l = 1)

e f1+Jﬁa—1D(1_%) _j f1+Jﬁa—1D(1_%) iy
R D(1—¢)—j D—j

j:O j=0

29

COU(mat s Nemp) =F (NmatNemp) - K (Nmat) E (Nemp)

fit+fa—a—1 . fit+fa—a—1 .
oo (-G (T2
k

j=0 J Jj=0
fi+fa—a—1 1 . fitfa—a—1 1 .
D(l——)—j D(l——)—j
—kR|1-= —k k —k
Y fl*ﬁ“‘l D) =i T PO-R) -
7=0 D= j=0 D—ij =0 D(1—¢)—J

fitfo—a=l p _g) f1+f2 a=1)—j
—kR|1- k : <0
H - B

f1+f2—a—1D 11y f1+f2—a—1D 1—2)_ f1+f2—“—1D 1-2)_
P)(20

J=0 J=0 J=0
fitfa—a—-1 1 . fitfo—a—1 2 .
D) - DO}
=k L —1—(k—1) b

Becausg(k = oco0) = 0, it suffices to show thajg(k) is increasing irk.

f=1 _ 1y _ f—-1 oy
i) i
, ’ 1

j=0

§=0
Thus, it suffices to show

f_lDl—%—' D f Dl—%—'
(H e j) (55) H()Dgl,i;j')
| /

7

J=0

h(f; k) < 1 holds because one can check thét; k)

This completes the proof.

30

F Proof of Lemmal@

We first prove that?,,,.; = kivNiatp is unbiased,
Iemp,j =1= Imat,j =0
B (Lyat j|Lomp; = 0) = R

E(Imam‘k‘ — Ny = m> — (m/K)R, m > 0
P{k — Nupp > 0} = 1

B Nonat ke = Nomp) = Bk = Nomy)
E(Nmat/(kj — Nemp)‘k — Nemp> =R independent ofVe,,;,
E (Rua) = R

Next, we compute the variance. To simplify the notation,aderf = f; + fo — a andR
that

E<Imat,11mat,2 Iemp,l — Iemp,2 = 0) = R(a - 1)/(f - 1) = RR

R* — RR = R{a(f —1) — fla = 1)}/{f(f = 1)} = R - R)/(f — 1)
E<Imat,11mat,2 Iemp,l + Iemp,2 > 0) =0

By conditioning onk — N, We obtain

mat

E (N2

k — Nemp = m)
_ kE(Imat,l ‘k — Newp = m> 4 k(K — 1)E<Imat71[mat7g‘k — Nowp = m)

— Rm + k(k — 1)R]:2Pr<lemp71 = Tempz = O‘k; ~ Nopp = m)

— Rm + k(k —)RR (g‘) / <’;>

= Rm+m(m —1)RR
and

mat

E <R2

k — Nepp = m> = RR+ (R— RR)/m
ER?,, = RR+ (R— RR)E(k — Nupp) ™"

mat —

Combining the above results, we obtain

Var (Rmat) —RR—R?+ (R — RR)E(k — Nupp) ™"
=R(1 — R)E(k — Nemp) ™t — (R?2 — RR)(1 — E(k — Nepp) ™)
=R(1 = R)E(k — Nemp) ™" — R(1 = R)(f = 1)"'(1 = E(k — Newmp)
=R(1 — R) {E(k — Nemp) ™' —

R
R

P

31

)

F=1)7"+ (f = 1) Bk = Newp) ™)}

G Proof of Lemmal7

1 1 k
g(f’k)_1—(1—%)f <1+f—1>_f—1

To showg(f;, k) < 1, it suffices to show

h(f;k)=(f+k—1) (1— (1— %>f> —f>0 (note thath(1; k) = 0, h(2;k) > 0)

for which it suffices to show

() onsen (o)

and hence it suffices to showl — (f + & — 1)log (1 — +) > 0, which is true becausieg (1 — 1) < —+.
This completes the proof.

H Proof of Lemmal8

Recall we first divide theD elements intdk bins whose lengths are multinomial distributed with equal
probability%. We denote their lengths bY;, j = 1 to k. In other words,

11 1
(L1, Lo, ..., L) ~ multinomial <D, AR —)

k
and we know
D 1 1 D
E(Lj) = % Var(Lj) = DE <1 - E) , Cou(L;, Lj) = T2
Define
1 if the i-th element is hashed to theth bin
lij = i (34)
otherwise
We know
1 9 1 1
E(I5) %’ E(li;) = pE E(lijlij) =0, E(IL;ly;) = =
1 1 9
Bl-Lj)=1-7, BQ-Ly)’=1-7. BE(l-IL)0-Ly=1-7
Thus

32

k
E(Ngmp)zz H (1 Im)2+z H (1—1Ij) (1 — L)
Jj=1i€51USs J#j"1€S1US
1 fitfo—a 9 fit+fe—a
=k({1—— kk—1)(1-—
(1-5) ro-n(1-3)
1\ fi+f2—a 9\ fitf2—a) 1\ 2(f1+f2—a)
Va4 (1) ren (1-2) e (1)
Therefore,

Var (Nemp) _1 - 1 fitfa—a (1 l fitfa—a
k2 k k k
. 1 . 1 2(fi+f2—a) . 9 fit+fa—a
k k k
fit+fa—a fit+fa—a
<1 1— l 1—11-— l
k k k

This completes the proof of Lemrhh 8.

33

	1 Introduction
	1.1 Massive High-Dimensional Binary Data
	1.2 Minwise Hashing
	1.3 The Cost of Preprocessing and Testing
	1.4 Our Proposal: One Permutation Hashing
	1.5 Summary of the Advantages of One Permutation Hashing
	1.6 Related Work

	2 Applications of Minwise Hashing on Efficient Search and Learning
	2.1 Sublinear Time Near Neighbor Search
	2.2 Large-Scale Linear Learning

	3 Theoretical Analysis of the Fixed-Length One Permutation Scheme
	3.1 Expectation, Variance, and Distribution of the Number of Jointly Empty Bins
	3.2 Expectation and Variance of the Number of Matched Bins
	3.3 Covariance of Nmat and Nemp
	3.4 An Unbiased Estimator of R and the Variance
	3.5 Experiments for Validating the Theoretical Results
	3.5.1 E(Nemp) and Var(Nemp)
	3.5.2 E(Nmat) and Var(Nmat)
	3.5.3 Cov(Nemp, Nmat)
	3.5.4 E(mat) and Var(mat)

	4 Strategies for Dealing with Empty Bins
	4.1 The m-Permutation Scheme with 1<mk
	4.2 An Example of The ``Zero Coding'' Strategy for Linear Learning

	5 Experimental Results on the Webspam Dataset
	5.1 One Permutation v.s. k-Permutation
	5.2 Preprocessing Time and Training Time
	5.3 Zero Coding v.s. Random Coding for Empty Bins

	6 Experimental Results on the News20 Dataset
	6.1 One Permutation v.s. k-Permutation
	6.2 Zero Coding v.s. Random Coding for Empty Bins

	7 The Variable Length One Permutation Hashing Scheme
	8 Conclusion
	A Proof of Lemma 1
	B Proof of Lemma 2
	C Proof of Lemma 3
	D Proof of Lemma 4
	E Proof of Lemma 5
	F Proof of Lemma 6
	G Proof of Lemma 7
	H Proof of Lemma 8

