
Locality-sensitive hashing for the edit distance

Guillaume Marçais*, Dan DeBlasio, Prashant Pandey and

Carl Kingsford*

Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Sequence alignment is a central operation in bioinformatics pipeline and, despite many

improvements, remains a computationally challenging problem. Locality-sensitive hashing (LSH) is one

method used to estimate the likelihood of two sequences to have a proper alignment. Using an LSH, it is

possible to separate, with high probability and relatively low computation, the pairs of sequences that

do not have high-quality alignment from those that may. Therefore, an LSH reduces the overall compu-

tational requirement while not introducing many false negatives (i.e. omitting to report a valid align-

ment). However, current LSH methods treat sequences as a bag of k-mers and do not take into account

the relative ordering of k-mers in sequences. In addition, due to the lack of a practical LSH method for

edit distance, in practice, LSH methods for Jaccard similarity or Hamming similarity are used as a proxy.

Results: We present an LSH method, called Order Min Hash (OMH), for the edit distance. This

method is a refinement of the minHash LSH used to approximate the Jaccard similarity, in that

OMH is sensitive not only to the k-mer contents of the sequences but also to the relative order of

the k-mers in the sequences. We present theoretical guarantees of the OMH as a gapped LSH.

Availability and implementation: The code to generate the results is available at http://github.com/

Kingsford-Group/omhismb2019.

Contact: gmarcais@cs.cmu.edu or carlk@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Measuring sequence similarity is the core of many algorithms in

computational biology. For example, in the overlap–layout–consen-

sus paradigm to assemble genomes (e.g. Jaffe et al., 2003; Myers

et al., 2000), the first overlap step consists of aligning the reads

against one another to determine which pairs have a significant

alignment (an overlap). In meta-genomics, sequencing reads, or lon-

ger sequences created from these reads, are aligned against known

genomes, or against one another to cluster the sequences, to deter-

mine the constituent species of the sample. Sequence similarity is

also at the heart of the many general sequence aligners, either gen-

ome to genome [e.g. MUMmer4 (Marçais et al., 2018), LASTZ

(Harris, 2007)] or reads to genome [e.g. Bowtie2 (Langmead and

Salzberg, 2012), BWA (Li and Durbin, 2010)], that are used in

countless pipelines in bioinformatics.

Despite many algorithmic and engineering improvements [e.g.

implementation on SIMD (Zhao et al., 2013) and GPU (Liu et al.,

2012)], computing the sequence alignment or edit distance between

two sequences takes approximately quadratic time in the length of

the input sequences, which remains computationally expensive in

practice. Given that the edit distance is likely not computable in

strong subquadratic time (Backurs and Indyk, 2015), most aligners

rely on heuristics to more quickly detect sequences with a high prob-

ability of having an alignment.

Recent aligners, such as Mash (Ondov et al., 2016), Mashmap

(Jain et al., 2017), or overlappers such as MHap (Berlin et al.,

2015), use a method called ‘locality-sensitive hashing’ (LSH) to re-

duce the amount of work necessary (Indyk and Motwani, 1998).

The procedure is a dimensionality reduction method and works in

two steps. First, the sequences (or part of the sequences) are sum-

marized into sketches that are much smaller than the original

sequences while preserving important information to estimate how

similar two sequences are. Second, by directly comparing those

sketches (with no need to refer to the original sequences) or by using

these sketches as keys into hash tables, the software finds pairs of

sequences that are likely to be similar. A more thorough, and com-

putationally expensive, alignment procedure may then be used on

the candidate pairs to refine the actual alignments.

In an LSH method, the distance between sketches is used as a

first approximation for the distance between the sequences. That is,

with high probability, two sequences which are very similar must

have sketches which are similar, and conversely dissimilar sequences

have dissimilar sketches. More precise definition of these concepts is

given in Section 2.

VC The Author(s) 2019. Published by Oxford University Press. i127

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35, 2019, i127–i135

doi: 10.1093/bioinformatics/btz354

ISMB/ECCB 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/14/i127/5529166 by guest on 10 February 2023

http://github.com/Kingsford-Group/omhismb2019
http://github.com/Kingsford-Group/omhismb2019
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz354#supplementary-data
https://academic.oup.com/

Instead of using an LSH for the edit distance or an alignment

score, in practice sequence alignment programs use the minHash

LSH (Broder, 1997) for the Jaccard similarity or an LSH for the

Hamming distance as a proxy for the edit distance. Although these

two techniques have proven themselves useful in practice, they suffer

from one major flaw: neither the Jaccard similarity nor the

Hamming similarity directly corresponds to the edit distance (see

Section 2.2 for examples). In fact, it is possible to find sequences

that are indistinguishable according to the Jaccard similarity, but

have large edit distance. Similarly, with the Hamming distance,

there exist sequences with very low edit distance that are completely

dissimilar according to the Hamming similarity.

Depending on the problem and the software implementation, the

cases above can lead to false negatives (an alignment is missed) and

a decrease in precision, or false positives (a nonexistent potential

alignment reported) and extra computational work. An LSH method

for edit distance instead of the proxy Jaccard or Hamming similar-

ities would reduce both of these issues.

Although multiple definitions are possible for sequence similarity

(or distance), in this study, we focus on the edit distance (a.k.a.

Levenshtein distance, Levenshtein, 1966), which is the number of

operations (mismatch, insertion, deletion) needed to transform a

string into another one.

Two methods that are LSH for the edit distance have been

described previously. Bar-Yossef et al. (2004) propose a sketch that

can distinguish, with some probability, between sequences with edit

distance � t from sequences with edit distance � tnð Þ2=3, where n is

the length of the sequences, for any t �
ffiffiffi
n
p

. They use an indirect

method to obtain an LSH for the edit distance: first they embed the

edit distance space into a Hamming space with low distortion, and

second, apply an LSH on the Hamming space. That is, the input se-

quence is first transformed into a bit vector of high dimension, then

sketching for the Hamming distance is applied to obtain an LSH for

the edit distance.

Similarly, Ostrovsky and Rabani (2007) propose a two-step

method, where the edit distance space is first embedded into an ‘1
space with low distortion, then a sketching algorithm for the ‘1
(Kushilevitz et al., 2000) is used to obtain an LSH for the edit dis-

tance. This method can distinguish between sequences with edit dis-

tance � t and edit distance � t � 2c
ffi
log n log log n
p

, for some constant c.

We propose a simpler and direct method that is an LSH for the

edit distance. Our method is an extension to the minHash method.

We call our method OMH for Order Min Hash, and it can be seen

as a correction of the minHash method. The probability of hash col-

lision in the OMH method is the product of two probabilities. The

first is the probability to select a k-mer from the set of common

k-mers between the two sequences. This probability is similar to

minHash that estimates the Jaccard similarity between the k-mer

contents of two sequences. However, there is one key difference: the

minHash method estimates the Jaccard similarity which treats

sequences as sets of k-mers, and the number of occurrences of each

k-mer in the sequences is ignored, whereas OMH estimates the

weighted Jaccard, where the number of occurrences of a k-mer in a

sequence is significant, i.e. the weighted Jaccard works with multi-

sets. The second probability is the likelihood that the common

k-mers appear in the same relative order in the two sequences.

Therefore, OMH is sensitive not only to the k-mer content of the

sequences but also to the order of the k-mers in the sequences.

The sketch proposed for OMH is only slightly bigger than the

sketch for minHash while maintaining significantly more informa-

tion about the similarity of two sequences. In addition to providing

an estimate for the edit distance between two sequences, it also

provides an estimate of the k-mer content similarity (the weighted

Jaccard) and how similar the relative order is between the common

k-mers of the two sequences.

Section 2 summarizes the notation used though out and main

results. Detailed proofs of the results are given in Section 3. Section

4 discusses some practical consideration on the implementation of

the sketches.

2 Main results

2.1 Concepts and definitions
Similarity and dissimilarity. A dissimilarity is a function d :

U � U ! 0; 1½ � that indicates the distance between two elements in

the universe U. d satisfies the triangle inequality and d x; yð Þ ¼ 0

means that x ¼ y. In other words, a dissimilarity is a normalized

distance. A similarity is a function s �; �ð Þ such that 1� s is a dissimi-

larity. Hence, a dissimilarity defines a similarity and vice versa. We

will therefore use either of the terms ‘edit dissimilarity’ or ‘edit

similarity’.

Given two strings S1; S2 2 Rn of length n (where R is the alphabet

of size r ¼ jR j), the Hamming dissimilarity Hd S1; S2ð Þ is the num-

ber of indices at which S1 and S2 differ divided by n: Hd S1; S2ð Þ ¼
j i 2 n½ � j S1 i½ � 6¼ S2 i½ �
� �

j =n (n½ � denotes the set 0; . . . ; n� 1f g). The

edit dissimilarity Ed S1; S2ð Þ (a.k.a. normalized edit distance) is the

minimum number of indels (short for insertion or deletion) and mis-

matches necessary to transform S1 into S2, divided by n. Given two

sets A and B, the Jaccard similarity is J A;Bð Þ ¼ jA \ B j = jA [B j .
Gapped LSH. Let H be a set of hash functions defined on a set U

(the universe). A probability distribution on the set H is called

s1; s2; p1;p2ð Þ-sensitive for the similarity s when

s x; yð Þ � s1) Pr
h2H

h xð Þ ¼ h yð Þ
� �

� p1; (1)

s x; yð Þ � s2) Pr
h2H

h xð Þ ¼ h yð Þ
� �

� p2; (2)

where s1 � s2 and p1 � p2. A similarity admits a gapped LSH

scheme if there exists a distribution on a set of hash functions that is

s1; s2; p1;p2ð Þ-sensitive. In the definition above, the probability is

taken over the choice of the hash function in H and the implications

hold for any choice of x and y 2 U. In a gapped LSH, the probability

of a hash collision is increased (� p1) between similar elements, and

less likely (� p2) for dissimilar elements.

In the following, the probabilities are always taken over the

choice of the hashing function, even though we may omit the

‘h 2 H’ subscript.

LSH. An LSH for a similarity is a family of hash functions that is

r; r; r; rð Þ-sensitive for any r 2 0;1ð Þ. Equivalently, the family of hash

functions satisfies Pr h xð Þ ¼ h yð Þ
� �

¼ s x; yð Þ. In practice a gapped

LSH is typically used to put elements into a hash table where there is

high likelihood of a collision, whereas a full LSH can be used as a

direct estimator of the underlying measurement.

minHash sketch. Let the universe U be a family of sets on the

ground set X (i.e. U � P Xð Þ). The minHash LSH for the Jaccard

similarity is defined as the uniform distribution on the set

Hmin ¼ hp Að Þ ¼ minx2Ap xð Þ j p is a permutation of X
� �

. That is, the

hash function selects the smallest element of the set A according to

some ordering p of the elements of the ground set X. This family of

hash functions is s; s; s; sð Þ-sensitive for any value of s 2 0; 1½ �, or

equivalently Pr h Að Þ ¼ h Bð Þ
� �

¼ J A;Bð Þ.
LSH for Hamming similarity. The Hamming similarity between

two sequences with same length n is the proportion of positions

i128 G.Marçais et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/14/i127/5529166 by guest on 10 February 2023

which are equal: Hs S1; S2ð Þ ¼ j i 2 n½ � j S1 i½ � ¼ S2 i½ �
� �

j =n. For the

Hamming similarity, the uniform distribution on H ¼
hi Sð Þ ¼ S i½ � j i 2 n½ �
� �

satisfies Pr h S1ð Þ ¼ h S2ð Þ½ � ¼ Hs S1; S2ð Þ.
String k-mer set. For a sequence S, the set of its constituent k-

mers is Mk Sð Þ ¼ S i : k½ � j i 2 j S j � kþ 1½ �
� �

, where S i : k½ � is the

substring of length k starting at index i. By extension, the Jaccard

similarity between two sequences is the Jaccard similarity between

their k-mer sets: J S1; S2ð Þ ¼ J Mk S1ð Þ;Mk S2ð Þð Þ.
Weighted Jaccard. The weighted Jaccard similarity on multi-sets

(or weighted sets) is defined similarly to the Jaccard similarity on

sets, where the intersection and union take the multiplicity of the

elements into account. More precisely, a multi-set A is defined by an

index function vA : U ! N, where vA xð Þ gives the multiplicity of x in

A (zero if not present in A). The index function of the intersection of

two multi-sets is the minimum of the index functions, and for the

union it is the maximum. Then, the weighted Jaccard is defined by

Jw A;Bð Þ ¼
P

x2U min vA xð Þ; vB xð Þð ÞP
x2U max vA xð Þ; vB xð Þð Þ

:

This is a direct extension to the set definitions, where the index func-

tion takes values in {0, 1}.

2.2 Jaccard and Hamming similarities differ from edit

similarity
Similarly to the definition of the LSH, we say that a similarity f1 is a

s1; s2; t1; t2ð Þ-proxy for the similarity f2 if

f1 x; yð Þ � s1) f2 x; yð Þ � t1 (3)

f1 x; yð Þ � s2) f2 x; yð Þ � t2 (4)

That is high similarity for f1 implies high similarity for f2, and the

converse. Because of the similar structure between the definitions of

sensitivity and proxy, if f1 is not a proxy for f2 (for any non-trivial

choice of parameters s1; s2; t1; t2), then an LSH for f1 is not an LSH

for f2.

We show here that neither the Hamming similarity nor the

Jaccard similarity is a good proxy for the edit dissimilarity. More

precisely, only one of the implications above is satisfied.

Jaccard similarity differs from edit similarity. A low Jaccard

similarity does imply a low edit similarity (Equation 4). On the other

hand, consider the sequence S1 ¼ 0 . . . 01 . . . 1 that has n � k 0s fol-

lowed by k 1s, and S2 with k 0s followed by n � k 1s (k fixed, n arbi-

trarily large). The k-mer sets of S1 and S2 are identical, hence

J S1; S2ð Þ ¼ 1, while the edit similarity is � 2k=n. These sequences

are indistinguishable according to the Jaccard similarity while hav-

ing arbitrarily small edit similarity (Equation 3 not satisfied).

Weighted Jaccard similarity differs from edit similarity. Consider

two de Bruijn sequences: sequences of length rk containing every k-

mer exactly once (van Aardenne-Ehrenfest and de Bruijn, 1951).

There is a very, very large number of such sequences [r!ð Þr
k�1

=rn],

and although any two such sequences have exactly the same k-mer

content, they might otherwise have a very low edit similarity. Both

the Jaccard and weighted Jaccard similarities fail to distinguish be-

tween de Bruijn sequences, regardless of their mutual edit

dissimilarity.

For example, the two sequences 1111011001010000111 and

0000101001111011000 of length 19 each contain exactly the 16

possible 4-mers; hence, their Jaccard and weighted Jaccard similar-

ities are 1. Their edit similarity is only 	0:37. By comparison, two

random binary sequences of length 19 have an average edit similar-

ity of 	0:62 and an average Jaccard similarity of 	0:36. In other

words, these two de Bruijn sequences are much more dissimilar

than two random sequences despite having a perfect Jaccard

similarity.

More generally, both Jaccard and weighted Jaccard similarities

treat sequences as bags of k-mers. The information on relative order

of these k-mers within the sequence is ignored, although it is of great

importance for the edit similarity. In contrast, an OMH sketch does

retain some information on the order of the k-mers in the original

sequence. In the case of the two de Bruijn sequences above, the pro-

portion of pairs of k-mers that are in the same relative order in the

two sequences is 0.4. The expected similarity between the OMH

sketches of these sequences is also equal to 0.4.

Hamming similarity differs from edit similarity. A high

Hamming similarity does imply a high edit similarity (Equation 3).

The opposite is not true however. Consider the sequences of length

n, S1 ¼ 0101 . . . 01 and S2 ¼ 1010 . . . 10. These sequences have a

Hamming similarity of 0 and an edit similarity of � 1� 2=n (two

indels). That is, these sequences are as dissimilar as possible accord-

ing to the Hamming dissimilarity, but an arbitrarily high edit simi-

larity (Equation 4 not satisfied).

The Hamming similarity is very sensitive to the absolute position

in the string. A single shift between two sequences has a large impact

on the Hamming similarity but only a unit cost for the edit similar-

ity. An OMH sketch on the other hand only contains relative order

between k-mers and is indifferent to changes in absolute position.

2.3 LSH for the edit similarity
An LSH for the edit similarity must be sensitive to the k-mer

content of the strings and the relative order of these k-mers, but

relatively insensitive to the absolute position of the k-mers in the

string. This motivates the definition below. Similarly to the

minHash, k-mers are selected at random by using a permutation

on the k-mers. Additionally, to preserve information about relative

order, ‘ k-mers are selected at once and recorded in the order they

appear in the sequence (rather than the order defined by the

permutation).

Additionally, the method must handle repeated k-mers. Two

copies of the same k-mer occur at different positions in the sequence,

and it is important for the relative ordering between k-mers to dis-

tinguish between these two copies. We make k-mers unique by

appending to them their ‘occurrence number’.

More precisely, for a string S of length j S j ¼ n, consider the set

Mw
k Sð Þ of the pairs of the k-mers and their occurrence number. If

there are x copies of m in sequence S, then the x pairs

m; 0ð Þ; . . . ; m; x� 1ð Þ are in the setMw
k Sð Þ, and the occurrence num-

ber denotes the number of other copies of m that are in the sequence

S to the left of this particular copy. That is, if m is the k-mer at pos-

ition i in S (i.e. m ¼ S i : k½ �), then its occurrence number is

j j 2 i½ � j S j : k½ � ¼ m
� �

j . This set is the ‘multi-set’ of the k-mer con-

tent of string S, or the ‘weighted set’ of k-mers where the number of

occurrences is the weight of the k-mer (hence the w superscript). We

call a pair (m, i) of a k-mer and an occurrence number a ‘uniquified’

k-mer.

A permutation p of Rk � n½ � defines two functions hw
‘;p and h‘;p.

hw
‘;p Sð Þ ¼ m1;o1ð Þ; . . . ; m‘;o‘ð Þð Þ is a vector of length ‘ of elements

ofMw
k Sð Þ such that:

• the pairs (mi, oi) are the ‘ smallest elements ofMw
k Sð Þ according

to p,
• the pairs are listed in the vector in the order in which the k-mer

appears in the sequence S. That is, if i < j, mi ¼ S x : k½ � and

mj ¼ S y : k½ �, then x < y.

Locality-sensitive hashing for the edit distance i129

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/14/i127/5529166 by guest on 10 February 2023

The vector h‘;p Sð Þ ¼ m1; . . . ;m‘ð Þ contains only the k-mers from

hw
‘;p Sð Þ, in the same order. The OMH method is defined as the uni-

form distribution on the set of hash functions

Hk;‘ ¼ h‘;p j p a permutation of Rk � n½ �
n o

.

For extreme cases, where ‘ ¼ n� kþ 1, the vector contains

overlapping k-mers that cover the entire sequence S. In that case,

equality of the hash values implies strict equality of the sequences.

At the other extreme, where ‘ ¼ 1, the vectors contain only one

k-mer and no relative order information is preserved. In that case,

only the k-mer content similarity between S1 and S2 matters.

The weighted Jaccard similarity Jw S1; S2ð Þ of two sequences is

the weighted Jaccard of their k-mer content (seen as multi-set).

Because k-mers were made unique by their occurrence number in

Mw
k Sð Þ, the weighted Jaccard similarity is equivalently defined as

Jw S1; S2ð Þ ¼ J Mw
k S1ð Þ;Mw

k S2ð Þ
� �

.

THEOREM 1. When ‘ ¼ 1, OMH is an LSH for the weighted Jaccard

similarity:

Pr h1;p S1ð Þ ¼ h1;p S2ð Þ
� �

¼ Jw S1; S2ð Þ: (5)

PROOF. This proof is similar to that of minHash and the Jaccard similar-

ity (Broder, 1997). Because every uniquified k-mer inMw
k S1ð Þ [Mw

k S2ð Þ
has the same probability of being selected, the probability of having a

hash collision is the same as selected a k-mer from the intersection where

the probability of picking a k-mer is weighted by its maximum occur-

rence number. h

As we shall see in Section 4.4, the weighted Jaccard similarity

contains approximately the same information as the Jaccard similar-

ity with respect to the edit similarity.

For the general case 1 < ‘ < n� kþ 1, we shall prove the fol-

lowing theorem in Section 3 that OMH is a gapped LSH for the edit

dissimilarity.

THEOREM 2. For any ‘ 2 2;n� k½ � and any 1 > s1 � s2 > 0, there exist

functions p1
n;k;‘ �ð Þ and p2

n;k;‘ �ð Þ such that OMH is

s1; s2; p
1
n;k;‘ s1ð Þ; p2

n;k;‘ s2ð Þ
	

-sensitive for the edit distance.

The actual functions p1 and p2 are explicitly defined in Section 3, but

they may not be easily expressed with elementary functions in general.

3 Proofs of main results

We shall now prove Theorem 2 that OMH is sensitive for the edit

similarity by exhibiting the relations between parameters

s1; s2; p1;p2ð Þ that satisfy Equations (1) and (2). We will break the

proof in two lemmas that provide the relations between s1, p1 and be-

tween s2, p2. In the following, S1 and S2 are two sequences of length

n. The number of k-mers in each of these sequences is nk ¼ n� kþ 1.

In the following, we assume that a binomial coefficient ð n
k
Þ

where n is negative or null is equal to 0. In these proofs, it means

that the probability of choosing elements from the empty set is zero.

LEMMA 1. Es S1; S2ð Þ � s1) Pr h‘;p S1ð Þ ¼ h‘;p S2ð Þ
� �

� p1 when

p1 ¼

n� n kþ 2ð Þ 1� s1ð Þ
‘

� �

nk þ kn 1� s1ð Þ
‘

� � : (6)

PROOF. The situation is similar to the minHash method. Suppose that

Es S1; S2ð Þ � s1, then the edit dissimilarity Ed S1; S2ð Þ ¼ 1� Es S1; S2ð Þ �
1� s1 and the number of mismatches and indels is � n 1� s1ð Þ. Any

alignment between s1 and s2 has at most n 1� s1ð Þ mismatches and

indels, because Ed S1; S2ð Þ � 1� s1. Therefore, there are at least nk �
kn 1� s1ð Þ k-mers in the aligned bases, as an error (mismatch or indel)

affects at most k consecutive k-mers.

Similarly, the size of the set Mw
k S1ð Þ [Mw

k S2ð Þ is maximized

when all the k-mers that are not part of the alignment are different.

Then, jMw
k S1ð Þ [Mw

k S2ð Þ j is at most nk þ kn 1� s1ð Þ.
We estimate the probability to have a hash collision from the

number of uniquified k-mers in the aligned bases. As seen in

Figure 1, it is possible for a k-mer m with different occurrence num-

bers to be part of the aligned bases. Any permutation that has m; 0ð Þ
in the lowest ‘ uniquified k-mers does not lead to a hash collision.

Let x be the number of k-mers in the aligned bases with occurrence

number that disagree between S1 and S2. Therefore, there are at least

x k-mers outside of the aligned bases representing at least xþ k� 1

unaligned bases. Given that the edit similarity is � s1, the number of

unaligned bases is at most 2n 1� s1ð Þ and xþ k� 1 � 2n 1� s1ð Þ.
Consequently, the number of k-mers in the aligned bases to choose

from is at least the number of k-mers in the aligned bases

(nk � kn 1� s1ð Þ) minus the number of k-mers with disagreeing oc-

currence number (x) n� n kþ 2ð Þ 1� s1ð Þ.
Every element ofMw

k S1ð Þ [Mw
k S2ð Þ has an equal probability to

be in the lowest ‘ elements according to a permutation p; therefore,

the probability of having a hash collision is:

Pr h‘;p S1ð Þ ¼ h‘;p S2ð Þ
� �

� Pr hw
‘;p S1ð Þ ¼ hw

‘;p S2ð Þ
h i

�

n� n kþ 2ð Þ 1� s1ð Þ
‘

� �

nk þ kn 1� s1ð Þ
‘

� � :
(7)

This defines the relationship between p1 and s1 as in Equation (6).

h

For the proof of Equation (2), we will consider its contrapositive

Pr h‘;p S1ð Þ ¼ h‘;p S2ð Þ
� �

� p2) Es S1; S2ð Þ > s2: (8)

That is for any two sequences with high probability of having a

hash collision, the edit similarity of the sequences must be high.

To have a high probability of collision between two sketches, the

sequences must (i) have a large number of common k-mers and (ii)

these common k-mers should be mostly in the same relative order.

The first condition corresponds to the sequences having a large

weighted Jaccard similarity.

The second condition is related to common subsequences (CSs) be-

tween sequences of k-mers. A ‘common subsequence’ between aið Þ
and bið Þ is a sequence of elements that are in both aið Þ and bið Þ and

Fig. 1. For an alignment between S1 and S2, the gray area represents the

aligned bases. A particular k-mer m is shown with its occurrence numbers.

The occurrence number of the matched k-mer pairs in the aligned bases may

not agree (as in this example). For every such m with a mismatch occurrence

number in the aligned bases, there must exist an instance of m outside the

aligned bases [ðm; 0Þ in S1 here]

i130 G.Marçais et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/14/i127/5529166 by guest on 10 February 2023

appear in the same order (formally an increasing function u such that

au ið Þ ¼ bu ið Þ). We emphasize here that the ‘sequences’ considered here

are not DNA sequences, but ordered lists of k-mers aið Þi2N.

If the sequences S1 and S2 have a long CS of k-mers, then the

probability to pick ‘ k-mers in the same order between the common

k-mers of S1 and S2 will be high. In turn, the presence of a long CS

of k-mers implies a high similarity.

Considering Equation (8), we are looking for the lowest similar-

ity (s2) that is achievable given a high probability (p2) of hash colli-

sion. This is done in two parts: (i) finding the lowest weighted

Jaccard between S1 and S2 given the high hash collision rate and (ii)

constructing a worse case example of having many CSs of k-mers

while not having any long CS. This second problem is equivalent to

finding, for a given L, a single sequence with as many as possible

increasing subsequences of length L (see Lemma 3).

LEMMA 2. Es S1; S2ð Þ � s2) Pr h‘;p S1ð Þ ¼ h‘;p S2ð Þ
� �

� p2 when

p2 ¼

nk

ns2 � kþ 1

� �‘ ns2 � kþ 1
‘

� �

nk

‘

� � : (9)

PROOF. We use the notation hw
‘;p Sð Þ

n o
for the set of elements in the vector

hw
‘;p Sð Þ (in other words, because all the elements are unique by construc-

tion, the elements without order).

As mentioned above, we consider the contrapositive state in

Equation (8). We have that

p2 < Pr h‘;p S1ð Þ ¼ h‘;p S2ð Þ
� �

¼

Pr h‘;p S1ð Þ ¼ h‘;p S2ð Þ j hw
‘;p S1ð Þ

n o
¼ hw

‘;p S2ð Þ
n oh i

�Pr hw
‘;p S1ð Þ

n o
¼ hw

‘;p S2ð Þ
n oh i

:

(10)

Under the conditional event (C) that fhw
‘;pðS1Þg ¼ fhw

‘;pðS2Þg, we

have h‘;pðS1Þ ¼ h‘;pðS2Þ () hw
‘;pðS1Þ ¼ hw

‘;pðS2Þ. The reverse implica-

tion (() is always true as h is obtained from hw by using only the k-

mer in each element. The forward implication ()) holds thanks to

(C). Given that the k-mers are listed in order in which they appear in

the respective sequences, they are also listed in order of their occur-

rence number, and because the content in the weighted vectors hw is

the same, the equality of the unweighted vectors h implies equality

of the weighted vectors.

Let m ¼ jMw
k S1ð Þ \Mw

k S2ð Þ j be the size of the intersection of

the weighted k-mer sets. The event (C) occurs when the ‘ smallest k-

mers/occurrence number pairs according to the permutation p be-

long to the intersectionMw
k S1ð Þ \Mw

k S2ð Þ. Therefore,

Pr hw
‘;p S1ð Þ

n o
¼ hw

‘;p S2ð Þ
n oh i

¼

jMw
k S1ð Þ \Mw

k S2ð Þ j
‘

� �

jMw
k S1ð Þ [Mw

k S1ð Þ j
‘

� �

�

m
‘

� �

nk

‘

� � :
(11)

Consider now the sequences Mw
k S1ð Þ and Mw

k S2ð Þ of the elements

of Mw
k S1ð Þ \Mw

k S2ð Þ listed in the order in which they occur in S1

and S2, respectively. Both of these sequences have length m. Then,

the event that h‘;p S1ð Þ ¼ h‘;p S2ð Þ under the condition (C) is equiva-

lent to having the hash function hw
‘;p picking a CS of length ‘ between

Mw
k S1ð Þ and Mw

k S2ð Þ. Because the elements of these sequences are

never repeated (it is a list of uniquified k-mers), the problem of find-

ing CSs between Mw
k S1ð Þ and Mw

k S2ð Þ is identical to finding increas-

ing subsequences (IS) in a sequence of integers of length m

(Fredman, 1975; Hunt and Szymanski, 1977).

Pr h‘;p S1ð Þ ¼ h‘;p S2ð Þ j Cð Þ
� �

� max
p2 m½ �!

Pr pick IS of length ‘ in p m½ �ð Þ
� �

;

(12)

where m½ �! is the set of all permutations of m½ �. Together, Equations

(10–12), and Lemma 3 imply that the following holds for any choice

of sequences S1, S2:

p2 < max ‘ � m;
m � nk

m

L

� �‘
L
‘

� �

m
‘

� �
m
‘

� �

nk

‘

� � <

nk

L

� �‘
L
‘

� �

nk

‘

� � ; (13)

where L is the length of the longest CS between Mw
k S1ð Þ and

Mw
k S2ð Þ. The function on the right-hand side of Equation (13) is an

increasing function of L, equal to 0 when L < ‘, and equal to 1

when L ¼ n� kþ 1. Given that s2 � Es S1; S2ð Þ � Lþ k� 1ð Þ=n,

replacing L by ns2 � kþ 1 in Equation (13) gives the desired rela-

tion between s2 and p2 of Equation (9). h

Finally, we prove the relationship between the length of the lon-

gest increasing subsequence (LIS) and the largest number of sequen-

ces of maximal length.

LEMMA 3. For i; n; ‘ 2 N; n � i � ‘, for any sequence of length n with an

LIS of at most i, the largest number of increasing subsequences of length

‘ is

n

i

� �‘
i
‘

� �
;

and this bound is tight.

PROOF. The proof relies on the properties of patience sorting (Aldous and

Diaconis, 1999). Patience sorting for a shuffled deck of cards works as

follows:

• The algorithm creates stacks of cards where in each stack the

cards are in decreasing order from the bottom to the top of the

stack. The stacks are organized in a line, left to right.
• At each round, the next card of the deck is examined and added

to the top of the left most stack it can go on, i.e. the left most

stack with a top card whose value is higher than the new card.
• If no existing stack is suitable, a new stack is created to the right

with the new card.

After all the cards are drawn and organized in stacks (see Fig. 2),

the following properties hold: (i) no two cards from an increasing

subsequence in the original deck are in the same stack, and (ii) the

number of stacks is equal to the LIS (see Aldous and Diaconis, 1999,

Lemma 1).

Fix i0 2 ‘; i½ � and a sequence S of length n with LIS of i0. At the

end of patience sorting of S, let s ¼ s0; . . . ; si0�1ð Þ be the vector of the

height of each of the stacks. Then, an upper bound on the number of

increasing subsequence of length ‘ in S is

g sð Þ ¼
X

A � i0½ �
jA j ¼ ‘

Y
j2A

sj: (14)

This is an upper bound as every choice of ‘ elements from differ-

ent stacks does not necessarily define a valid increasing subsequence

Locality-sensitive hashing for the edit distance i131

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/14/i127/5529166 by guest on 10 February 2023

of S. We show that g reaches its maximum when

s0 ¼ � � � ¼ si0�1 ¼ n=i0.

Because the set C ¼ fs ¼ ðs0; . . . ; si0 Þ j
P

j sj ¼ ng is compact, g

reaches a maximum on C. Suppose that in s, not all the sj are equal;

without loss of generality, assume that si0�2 and si0�1 are distinct. Set

a ¼ ðsi0�2 þ si0�1Þ=2 and consider the point s0 ¼ ðs0; . . . ; si0�3; a; aÞ.
Let us also use the notation

q xð Þ ¼
X

A � i0 � 2½ �
jA j ¼ x

Y
j2A

sj:

Then, we split the sum in g s0ð Þ into the terms containing neither

si0�2 nor si0�1 (¼ q ‘ð Þ), the terms that contain one of si0�2 or si0�1

(¼ 2aq ‘� 1ð Þ) and the terms that contain both (¼ a2q ‘� 1ð Þ), and

we use the inequality a2 > si0�2si0�1 (arithmetic mean is larger than

geometric mean):

g s0ð Þ ¼ q ‘ð Þ þ 2aq ‘� 1ð Þ þ a2q ‘� 2ð Þ

> q ‘ð Þ þ si0�2 þ si0�1ð Þq ‘� 1ð Þ þ si0�2si0�1q ‘� 2ð Þ

¼ g sð Þ:

Hence, g sð Þ, where s contains two distinct values, is not max-

imum, and g must reach its maximum when all the sj are equal.

Furthermore, in that case sj ¼ n=i0.

Therefore,

max
s2C

g sð Þ ¼
X

A � i½ �
jA j ¼ ‘

n

i0

� �‘
¼ n

i0

� �‘
i0

‘

� �
¢mn;‘ i0ð Þ: (15)

The function mn;‘ �ð Þ defined above is increasing and the max-

imum is reached for i0 ¼ i.

Finally, consider the sequence S(i, n), i divides n, defined by

blocks:

n=i� 1ð Þ � � � 0|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
block 1

2n=i� 1ð Þ � � � n=ið Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
block 2

� � � n� 1ð Þ � � � n� n=ið Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
blocki

:

Each block is of length n/i, the numbers in each blocks are in

decreasing order, and the start of the blocks are in increasing order:

block j is the decreasing sequence jn=i� 1ð Þ � � � j� 1ð Þn=i
� �

.

When the patience sorting algorithm is applied to the list S(i, n),

the stacks are filled up one by one, from bottom to top and from left

to right, and have the same height of n/i. Therefore, any choice of

one element in each stack is a valid increasing subsequence of S(i, n)

and the bound of Equation (15) is attained. h

Finally, we can restate and prove the main theorem.

THEOREM 2. For any ‘ 2 2;n� k½ � and any 1 > s1 � s2 > 0, there exist

functions p1
n;k;‘ �ð Þ and p2

n;k;‘ �ð Þ such that OMH is

s1; s2; p
1
n;k;‘ s1ð Þ; p2

n;k;‘ s2ð Þ
	

-sensitive for the edit distance.

PROOF. It is a direct consequence of Lemma 1 and Lemma 2. h

4 Discussion

4.1 Parameters s1;p1; s2;p2

To have a proper LSH method, the conditions p1 � p2 must hold.

This condition means that the method is able to distinguish with

some probability between dissimilar (� s2) and similar (� s1)

sequences. Figure 3 shows the functions p1 (blue lines) and p2 (red

lines) from Theorem 2 for varying values of ‘.

At the limit, taking p1 ¼ p2 ¼ p, the method can distinguish be-

tween any s1 and s2 such that p1 s1ð Þ � p and p2 s2ð Þ � p (gray lines

on Fig. 3). For larger values of ‘, the gap between distinguishable

values is reduced, although at the cost of having high values for s1.

4.2 Choice of parameter ‘
The main difference between OMH and the minHash methods is the

choice of ‘ k-mers, where minHash corresponds to the case of ‘ ¼ 1

(ignoring the slight difference between Jaccard and weighted

Jaccard). It might seem surprising at first that OMH is an LSH

for edit dissimilarity for any values of ‘, except for the extremes of

‘ ¼ 1 and ‘ ¼ n� kþ 1.

The proof of Theorem 2 is consistent with this analysis. For both

these extreme values of ‘, Equation (13), which relates the

Fig. 3. The relationships between the similarity thresholds s1 and s2, and the

probabilities p1 and p2, for n¼100, k¼5. Given a probability, e.g. p1 ¼ p2 ¼
0:25 shown by the horizontal gray line, the OMH method can distinguish

between similarities below s2 (below left vertical gray line) and from

similarities above s1 (above the right vertical gray line). The functions are

defined at discrete points, when ns is integral, represented by the circles

and squares

Fig. 2. An example of stacks created when sorting a deck of cards. The LIS is

6, with the arrows showing a possible increasing subsequence of maximal

length. To maximize the number of possible subsequences of maximum

length, the height of the stacks have to be equal

i132 G.Marçais et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/14/i127/5529166 by guest on 10 February 2023

probability p2 to the similarity s2, becomes trivially true (p2 < 1).

This means that even a certain hash collision (probability of 1) pro-

vides no guarantee on the relative order of common k-mers between

the two sequences (i.e. the length of the longest subsequence L¼1:

only one k-mer is guaranteed to align). On the other hand, any other

value of ‘ leads to an actual bound in Equation (13).

For example, when ‘ ¼ 2, the minimum number of k-mers that

must align in proper order as a function of the collision probability p2 is

L ¼ n� kþ 1

n� kð Þ 1� p2ð Þ þ 1
: (16)

Even in the case where n is very large, then L 	 1= 1� p2ð Þ, the

number of properly aligning k-mers becomes large when the prob-

ability of collision p2 is close to 1. This is in contrast to the

minHash, where a probability of collision of 1 (i.e. a Jaccard similar-

ity of 1) does not guarantee that more than two k-mers properly

align (see example in Section 2.2).

In practice, the parameter ‘ should be relatively small, say

2 � ‘ � 5. Increasing the value of ‘ has two effects on the OMH

method. First, it increases the minimum edit similarity that is de-

tectable by the method, as there must be at least ‘þ k� 1 bases in

the alignment of the two sequences for OMH to have a non-zero

probability of hash collision. Second, a larger value of ‘ implies

that the probability of hash collision is small, which requires stor-

ing a higher number of vectors in a sketch to obtain a low variance.

There is a trade-off between how sensitive the scheme is to relative

order (high value of ‘) and the smaller size for the sketch (low

value of ‘).

4.3 Practical sketches for OMH
In our implementation, the OMH sketch for a sequence S contains

more than just the list of vectors h‘;p Sð Þ. In practice, we store

• the length of the sequence j S j ,
• a list of m vectors h‘;p Sð Þ and associated order vector

r‘;p Sð Þ ¼ r0; . . . ; r‘�1ð Þ.

Recall that the k-mers in the vector h‘;p Sð Þ are listed in the order

in which they appear in S. The order vector r‘;p is a permutation of

the indices ‘½ � that can reorder the k-mers according to p. That is,

h‘;p Sð Þ ¼ m0; . . . ;m‘�1ð Þ and i< j imply that p mri
; orið Þ < p mrj

; orjð Þ
(where, as in the definition, oi is the occurrence number of the k-mer

mi). The total space usage of a sketch is O log j S j þm‘ k log rþð
�

log ‘ÞÞ.
The reason for the order vector in the sketch is to recover both

an estimate of the weighted Jaccard between the two sequences and

how well these common k-mers properly align. More precisely,

given two sketches for S1 and S2, the number of collisions h‘;p S1ð Þ ¼
h‘;p S2ð Þ and the number of collisions in the reordered k-mers accord-

ing to the order vector o‘;p give an estimate of the weighted Jaccard

Jw S1; S2ð Þ. Using this estimate, the sizes of S1 and S2 from the

sketches, and the formula jMw
k S1ð Þ j þ jMw

k S2ð Þ j ¼ jMw
k S1ð Þ[

Mw
k S2ð Þ j þ jMw

k S1ð Þ \Mw
k S2ð Þ j , we can recover estimates for the

size of the intersection and union of the weighted k-mer sets.

Finally, formulas (10) and (11) give the probability for ‘ k-mers

from the intersection to be in the same alignment order between the

two sequences. The case where the Jaccard similarity is not sufficient

to assess that the sequences have a high edit similarity is precisely

the case when this last probability is low.

In other words, the extra O log ‘ð Þ bits of information per k-mer

in the OMH sketch compared with a weighted minHash sketch cor-

responds to the supplemental information given by OMH compared

with minHash. Given that ‘ is small in practice, the cost for this

extra information is also very small.

For genomics sequences, it is traditional to compute the

minHash using ‘canonical’ k-mers (defined as a k-mer or its reverse

complement, whichever comes first lexicographically). In the OMH

sketches, it is not possible to use canonical k-mers as this in incom-

patible with the order information encoded in the vector h‘;p Sð Þ.
Rather, two sketches, one for the forward strand and one for the re-

verse are stored. Comparing two sequences requires doing two

sketches comparisons.

The size of an OMH sketch is O km‘ð Þ.

4.4 Weighted Jaccard and OMH
Even though the Jaccard and minHash sketches are regularly used as

a measure of the k-mer content similarity in computational biology

software, the weighted Jaccard similarity has been heavily studied

and used in other contexts, such as large database document classifi-

cation and retrieval (e.g. Shrivastava, 2016; Wu et al., 2017), near

duplicate image detection (Chum et al., 2008), duplicate news story

detection (Alonso et al., 2013), source code deduplication, time ser-

ies indexing (Luo and Shrivastava, 2017), hierarchical topic extrac-

tion (Gollapudi and Panigrahy, 2006), or malware classification

(Drew et al., 2017) and detection (Raff and Nicholas, 2017).

The weighted Jaccard, compared with the unweighted Jaccard,

gives a more complete measure of the similarity between two sets or

sequences. Obviously, when no elements are repeated, the two simi-

larities are equal. On the other hand, in the case of many repeated

elements, the difference can be significant.

For example, returning to the example from Section 2.2 where

S1 ¼ 0 . . . 01 . . . 1 with n – k 0s followed by k 1s and S2 with k 0s

followed by n – k 1s, the edit similarity is very low:

Es S1; S2ð Þ � 2k=n. The Jaccard similarity is J S1; S2ð Þ ¼ 1, in other

words, these two sequences are indistinguishable according to the

Jaccard similarity. On the other hand, the weighted Jaccard is also

very low: Jw S1; S2ð Þ ¼ 1= n� kð Þ, much more similar to the edit

similarity.

In the case of two de Bruijn sequences that might have very low

edit similarity, the Jaccard and weighted Jaccard are both equal to

1, as every k-mer occurs exactly once. Therefore, in this case the

weighted Jaccard provides no extra information. The OMH sketch-

ing method, being also sensitive to the relative orders of the k-mers

(see Equation 10), would have a probability of hash collision much

lower than 1.

In Figure 4, we generated 1 million random binary sequences

(r¼2) of length n¼100. Each string is then randomly mutated a

random number of times (up to 100 times) to obtain a pair of

sequences with a random edit dissimilarity. Then, for each pair,

we compute the actual edit dissimilarity, Hamming dissimilarity,

the exact—i.e. not estimated by minHash—Jaccard and weighted

Jaccard similarities. Additionally, the OMH sketch (with ‘ ¼ 2

and m¼500) is also computed for each pair. The graph shows the

median and first quartiles computed over the million pairs of

sequences. Even for sequences with high edit dissimilarity (>0.4),

the Jaccard similarity remains very high. However, the weighted

Jaccard and OMH are more sensitive to the edit dissimilarity.

4.5 Using sketches for phylogeny reconstruction
Genomic rearrangement in bacteria often involves mobile genom-

ic elements known as ‘insertion sequences’ (IS). Lee et al. (2016)

studied the frequencies and locations of these insertions and

found that the positions are largely driven by the locations of

Locality-sensitive hashing for the edit distance i133

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/14/i127/5529166 by guest on 10 February 2023

existing copies. Although the locations of these inserts may vary

across the genome, there are only a small number of inserted

sequences that occur regularly. Consequently, the k-mer content

of the genomes remains almost unchanged through these insertion

events.

To test the effectiveness of OMH to recover the history of these

insertion events, we simulated a family of Escherichia coli genomes

by inserting these IS elements. We randomized the order of the four

most common sequences (IS1, IS5, IS2, and IS186) and insert one

into the genome at each of four generations of produced genomes.

The location of the insertion was randomly chosen from the list of

locations where the same sequence had been previously identified.

Starting with E.coli K-12 MG1655 (NC_000913.2) we created two

children by inserting the first element in the randomized order at

two separate locations. For the next generation, we created two chil-

dren for each of the individuals by choosing two random locations

at which to insert the next sequence. For all the children in a gener-

ation, the same IS is inserted. We then measured all pairwise dissimi-

larities and created a phylogeny using the distances computed by

OMH and weighted Jaccard.

Figure 5 shows two phylogenies of the 16 final sequences with

m ¼ 10 000, k¼22, ‘ ¼ 3. We chose ‘ to provide high differenti-

ation between OMH and Jaccard, and m to provide high sensitivity

to sequence perturbation. The binary sequences are the path used to

create the child, i.e. siblings in the last generation would have the

same three-digit prefix. OMH recovered the structure of the tree ex-

cept for the four nodes at the top of the tree. Weighted Jaccard on

the other hand cannot resolve most of the lineages as the sequences

are very similar at the level of k-mer content. The experiment was

repeated 10 times, and in each a similar tree was recovered (see

Supplementary Fig. S1).

To test the robustness of OMH to lower values of m, and in turn

the necessary computational resources, we reconstructed the tree

above with m ¼ 1000;500; and 100 (see Fig. 6). Even for low values

of m, OMH is able to recover most of the tree structure, which is

not recovered by weighted Jaccard even with a much larger m.

5 Conclusion

We presented the OMH method that is an LSH for the edit dissimi-

larity. Unlike the Jaccard similarity, which is only sensitive to the k-

mer content of a sequence, OMH additionally takes into account

the relative order of the k-mers in a sequence.

The OMH method is a refinement of the weighted Jaccard simi-

larity that is used extensively in many related fields, such as docu-

ment classification and duplicate detection. However, despite the

advantages of the weighted Jaccard similarity, it has not yet been

widely adopted by the bioinformatics community. Using weighted

Jaccard and OMH for estimating edit similarity in bioinformatics

(a) (b)

Fig. 5. Phylogenies of the 16 child sequences produced by inserting IS ele-

ments into the Escherichia coli genome when distance is measured by both

(a) OMH and (b) weighted Jaccard with m ¼ 10 000, k¼ 22, ‘ ¼ 3. In general,

OMH is able to recover more of the lineage structure than Jaccard because

the k-mer content is very similar even though the sequences are inserted at

different locations

(a) (b) (c)

Fig. 6. Phylogenies of the 16 child sequences produced by inserting IS ele-

ments into the Escherichia coli genome when distance is measured by OMH

k¼22, ‘ ¼ 3 and m equals to (a) 1000, (b) 500 and (c) 100. As m increases,

OMH recovers more accurately the general structure of the tree

Fig. 4. Evolution of the Jaccard, weighted Jaccard, Hamming and OMH

against the edit dissimilarity on randomly generated binary sequences. In

average, the Jaccard similarity stays high, even for sequences with high edit

dissimilarity, unlike the weighted Jaccard, Hamming or OMH which are much

more sensitive to the edit dissimilarity

i134 G.Marçais et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/14/i127/5529166 by guest on 10 February 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz354#supplementary-data

applications can help reduce the number of false-positive matches

which can in turn avoid unnecessary computations.

Acknowledgements

The authors would like to thank Mohsen Ferdosi and Heewook Lee for valu-

able discussion, and Natalie Sauerwald for comments on the manuscript.

Funding

This work was supported in part by the Gordon and Betty Moore

Foundation’s Data-Driven Discovery Initiative [GBMF4554 to C.K.]; the US

National Institutes of Health [R01GM122935]; The Shurl and Kay Curci

Foundation; and the generosity of Eric and Wendy Schmidt by recommenda-

tion of the Schmidt Futures program.

Conflict of Interest: C.K. is a co-founder of Ocean Genomics, Inc.

References

Aldous,D. and Diaconis,P. (1999) Longest increasing subsequences: from pa-

tience sorting to the Baik-Deift-Johansson theorem. Bull. Am. Math. Soc.,

36, 413–432.

Alonso,O. et al. (2013) Duplicate news story detection revisited. In: Asia

Information Retrieval Symposium. Springer, pp. 203–214.

Backurs,A. and Indyk,P. (2015) Edit distance cannot be computed in strongly

subquadratic time (unless SETH is false). In: Proceedings of the

Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC

’15. ACM, New York, NY, USA, pp. 51–58.

Bar-Yossef,Z. et al. (2004) Approximating edit distance efficiently. In: 45th

Annual IEEE Symposium on Foundations of Computer Science, pp. 550–559.

Berlin,K. et al. (2015) Assembling large genomes with single-molecule

sequencing and locality-sensitive hashing. Nat. Biotechnol., 33, 623–630.

Broder,A.Z. (1997) On the resemblance and containment of documents. In:

Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.

No.97TB100171), pp. 21–29.

Chum,O. et al. (2008) Near duplicate image detection: min-Hash and tf-idf

weighting. In: BMVC, Vol. 810, pp. 812–815.

Drew,J. et al. (2017) Polymorphic malware detection using sequence classifica-

tion methods and ensembles. EURASIP J. Inf. Secur., 2017, 2.

Fredman,M.L. (1975) On computing the length of longest increasing subse-

quences. Discrete Math., 11, 29–35.

Gollapudi,S. and Panigrahy,R. (2006) Exploiting asymmetry in hierarchical

topic extraction. In: Proceedings of the 15th ACM International Conference

on Information and Knowledge Management. ACM, pp. 475–482.

Harris,R.S. (2007) Improved pairwise alignment of genomic DNA. PhD

Thesis, The Pennsylvania State University, PA, USA.

Hunt,J.W. and Szymanski,T.G. (1977) A fast algorithm for computing longest

common subsequences. Commun. ACM, 20, 350–353.

Indyk,P. and Motwani,R. (1998) Approximate nearest neighbors: towards

removing the curse of dimensionality. In: Proceedings of the Thirtieth

Annual ACM Symposium on Theory of Computing, STOC ’98. ACM, New

York, NY, USA, pp. 604–613.

Jaffe,D.B. et al. (2003) Whole-genome sequence assembly for mammalian

genomes: Arachne 2. Genome Res., 13, 91–96.

Jain,C. et al. (2017) A fast approximate algorithm for mapping long reads to

large reference databases. In: Sahinalp,S.C. (ed.) Research in Computational

Molecular Biology. Springer International Publishing, Cham, pp. 66–81.

Kushilevitz,E. et al. (2000) Efficient search for approximate nearest neighbor

in high dimensional spaces. SIAM J. Comput., 30, 457–474.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with

Bowtie 2. Nat. Methods, 9, 357–359.

Lee,H. et al. (2016) Insertion sequence-caused large-scale rearrangements in

the genome of Escherichia coli. Nucleic Acids Res., 44, 7109–7119.

Levenshtein,V.I. (1966) Binary codes capable of correcting deletions, inser-

tions, and reversals. In: Soviet Physics Doklady, Vol. 10, pp. 707–710.

Li,H. and Durbin,R. (2010) Fast and accurate long-read alignment with

Burrows–Wheeler transform. Bioinformatics, 26, 589–595.

Liu,C.-M. et al. (2012) SOAP3: ultra-fast GPU-based parallel alignment tool

for short reads. Bioinformatics (Oxford, England), 28, 878–879.

Luo,C. and Shrivastava,A. (2017) SSH (sketch, shingle, & hash) for indexing

massive-scale time series. In: NIPS 2016 Time Series Workshop, pp.

38–58.

Marçais,G. et al. (2018) MUMmer4: a fast and versatile genome alignment

system. PLOS Comput. Biol., 14, e1005944.

Myers,E.W. et al. (2000) A whole-genome assembly of Drosophila. Science,

287, 2196–2204.

Ondov,B.D. et al. (2016) Mash: fast genome and metagenome distance estima-

tion using MinHash. Genome Biol., 17, 132.

Ostrovsky,R. and Rabani,Y. (2007) Low distortion embeddings for edit dis-

tance. J. ACM, 54, 218–224.

Raff,E. and Nicholas,C. (2017) Malware classification and class imbalance via

stochastic hashed LZJD. In: Proceedings of the 10th ACM Workshop on

Artificial Intelligence and Security. ACM, pp. 111–120.

Shrivastava,A. (2016) Simple and efficient weighted minwise hashing. In:

Advances in Neural Information Processing Systems, pp. 1498–1506.

van Aardenne-Ehrenfest and de Bruijn (1951) Circuits and trees in oriented

linear graphs. Simon Stevin : Wis-en Natuurkundig Tijdschrift. Tschr., 28,

203–217.

Wu,W. et al. (2017) Consistent weighted sampling made more practical.

In: Proceedings of the 26th International Conference on World Wide

Web, WWW ’17. Republic and Canton of Geneva, Switzerland, pp.

1035–1043. International World Wide Web Conferences Steering

Committee.

Zhao,M. et al. (2013) SSW Library: an SIMD Smith-Waterman C/Cþþ li-

brary for use in genomic applications. PLoS One, 8, e82138.

Locality-sensitive hashing for the edit distance i135

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/14/i127/5529166 by guest on 10 February 2023

