
CS 6968: Scalable Algorithms Spring 2023

Lecture 19: Distributed Hash Tables cont. - April 13th, 2023

Prof. Prashant Pandey Scribe: Todd Thornley

1 Overview

In the last lecture we discussed various issues and design concerns with distributed hash tables,
ending with a discussion of Chord.

In this lecture we look into some questions from the previous lecture and discussed concepts from
the Distributed Hashing paper.

2 Skew/Load Factor

For N items on M machines using hash function H, the expected number of items on a machine
M is:

N/M

w.h.p. the number will be:
O(lg(N)/lglg(N))

if N = M per balls in bins.

Load factor is defined as total items
possible storage

3 Consistent Hashing

• There are M items such that each of them needs to be stored in one of the N distributed
machines

• Recal. hash functions
2-wise independent hash function

H = {ha,b|a ∈ {1 . . . p−1} and b ∈ {0, 1, 2 . . . p−1}| where ha,b(x) = (ax+b mod P) mod n

• Using a 2-wise independent family of hash functions we can create a perfect hash

• Perfect hashing only works well if the number of machines does not change

• If the number of machines changes:

1

Figure 1: Consistent Hashing Diagram. Data is placed clockwise or to the right.

1. Change the n in ha,b to n′ to get h′a,b:
By doing so almost all items will need to be moved to a new machine.

2. Keep n unchanged:
Thus no moving, but the new machine will go unused creating imbalanced load.

• A strategy is needed that does not incur a lot of rehashing while also keeping the load balanced
across all machines.

3.1 Basic Idea

Each machine and item is mapped to a random real number in the interval [0, 1]

• Store the item in the successor of the item’s hash position

• The successor is the first machine ”on the right”

• If there is no machine ”on the right”, the successor is the machine with the smallest number.
(Wrap around to the beginning, see figure 1)

3.2 Implementation

• To dynamically maintain machines and we need binary search trees whose keys are the values
assigned to the machines.

• Let hiandhm be respective hash functions that we use to hash items and machines in the
interval [0, 1]

2

3.2.1 Insert

• Find the successor of hi(x) in the BST

• Store x in returned machine

3.2.2 Delete

• Find the successor of hi(x) in the BST

• Delete x in returned machine

3.2.3 Node Up

• There may be items in the successor of hm(y) that belong in y

• Find the successor of hm(y) in the BST

• Move all items whose hi value is greater than hm(y) to y.

3.2.4 Node Down

• Find the successor of hm(y) in the BST

• Move all items in value is greater than hm(y) to returned node.

3.3 Bounds

Lemma 1:

w.h.p. no one machine has more than O(lg(n)/n) as a fraction of items

Proof:

Find some interval I of length 2lg(n)
n

• Pr[no machine lands in I] = (1−2lg(n)
n) ≈ 1

n2 by union bound

• Equally split [0, 1] into n
2lg(n) such intervals

• Pr[every interval has at least 1 machine] = 1− n
2lg(n) ∗

1
n2 > 1− 1

n

• w.h.p. each machine owns an interval of length at most c∗lg(n)
n

Bibliography.

3

References

[1] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin, Rina Panigrahy
Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots
on the World Wide Web. Symposium on Theory of Computing, 29(1):654–663, 1997.

4

