
Introduction Low dimensional data High dimensional data MIPS Summary

From NNS to MIPS
CS 5968/6968: Data Str & Alg for Scalable Computing Spring 2023

Benwei Shi

University of Utah

2023-02-27

Introduction Low dimensional data High dimensional data MIPS Summary

Learning Outcomes

Introduction Low dimensional data High dimensional data MIPS Summary

Nearest neighbor

What is the nearest neighbor?

Definition (Nearest Neighbor)

Given a universe Ω and a distance function D : Ω2 → R, the nearest neighbor of a
query point q ∈ Ω in a finite set of points P ⊆ Ω is,

p∗ = argmin
pi∈P

D(pi , q)

For example, Ω = R2

◦
◦

◦

◦

◦

◦
◦

◦

◦

q

Introduction Low dimensional data High dimensional data MIPS Summary

Nearest neighbor

What is the nearest neighbor?

Definition (Nearest Neighbor)

Given a universe Ω and a distance function D : Ω2 → R, the nearest neighbor of a
query point q ∈ Ω in a finite set of points P ⊆ Ω is,

p∗ = argmin
pi∈P

D(pi , q)

For example, Ω = R2

◦
◦

◦

◦

◦

◦
◦

◦

◦

q

Introduction Low dimensional data High dimensional data MIPS Summary

Nearest neighbor

What is the nearest neighbor?

Definition (Nearest Neighbor)

Given a universe Ω and a distance function D : Ω2 → R, the nearest neighbor of a
query point q ∈ Ω in a finite set of points P ⊆ Ω is,

p∗ = argmin
pi∈P

D(pi , q)

For example, Ω = R2

◦
◦

◦

◦

◦

◦
◦

◦

◦

q

Introduction Low dimensional data High dimensional data MIPS Summary

Nearest neighbor search (NNS)

Preprocess P so that one can efficiently find the nearest neighbor of q in P.

Reasonable preprocessing time: poly(n, d)

Fast query time: poly(log n, d)

Introduction Low dimensional data High dimensional data MIPS Summary

Nearest neighbor search (NNS)

Preprocess P so that one can efficiently find the nearest neighbor of q in P.

Reasonable preprocessing time: poly(n, d)

Fast query time: poly(log n, d)

Introduction Low dimensional data High dimensional data MIPS Summary

Nearest neighbor search (NNS)

Preprocess P so that one can efficiently find the nearest neighbor of q in P.

Reasonable preprocessing time: poly(n, d)

Fast query time: poly(log n, d)

Introduction Low dimensional data High dimensional data MIPS Summary

Similarity search?

Similarity is an opposing concept to the distance.

Similar elements should have small distance.

Far apart elements should not be similar.

e.g., the Gaussian kernel similarity K (p, q) = exp
(
−D(p,q)2

2σ2

)
. When distance

D = 0, the kernel is 1 and when distance D is large, the kernel is almost 0.

Minimizing the distance is equivalent to maximizing the similarity.

When the objective is to maximizing a similarity function, we call it similarity
search.

Introduction Low dimensional data High dimensional data MIPS Summary

Similarity search?

Similarity is an opposing concept to the distance.

Similar elements should have small distance.

Far apart elements should not be similar.

e.g., the Gaussian kernel similarity K (p, q) = exp
(
−D(p,q)2

2σ2

)
. When distance

D = 0, the kernel is 1 and when distance D is large, the kernel is almost 0.

Minimizing the distance is equivalent to maximizing the similarity.

When the objective is to maximizing a similarity function, we call it similarity
search.

Introduction Low dimensional data High dimensional data MIPS Summary

Similarity search?

Similarity is an opposing concept to the distance.

Similar elements should have small distance.

Far apart elements should not be similar.

e.g., the Gaussian kernel similarity K (p, q) = exp
(
−D(p,q)2

2σ2

)
. When distance

D = 0, the kernel is 1 and when distance D is large, the kernel is almost 0.

Minimizing the distance is equivalent to maximizing the similarity.

When the objective is to maximizing a similarity function, we call it similarity
search.

Introduction Low dimensional data High dimensional data MIPS Summary

Similarity search?

Similarity is an opposing concept to the distance.

Similar elements should have small distance.

Far apart elements should not be similar.

e.g., the Gaussian kernel similarity K (p, q) = exp
(
−D(p,q)2

2σ2

)
. When distance

D = 0, the kernel is 1 and when distance D is large, the kernel is almost 0.

Minimizing the distance is equivalent to maximizing the similarity.

When the objective is to maximizing a similarity function, we call it similarity
search.

Introduction Low dimensional data High dimensional data MIPS Summary

Common distance functions

For Rd :

Lp distance: Lp(p, q) :=
(∑d

i=1 |pi − qi |p
)1/p

for p ≥ 1. When p = 2 we get the

Euclidean distance. Other common choices are p = 1 (Manhattan distance) and
p =∞ (Chebyshev distance).

Cosine similarity: SC (p, q) =
pT q

∥p∥2∥q∥2
.

Dot product (similarity): SD(p, q) = pTq.

For strings:

Edit distance, Hamming distance.

For the power set of a finite set:

Jacard similarity, Jacard distance,

For nodes in a graph:

Length of the shortest path.

For point sets:

Kernel distance, Gromov-Hausdorff distance.

Introduction Low dimensional data High dimensional data MIPS Summary

Applications

What can you do with an efficient NNS?

Learning: Pattern recognition, prediction, classification

Cons: Need to store all the data points.
Model based learning methods are better at this.

Matching: DNA sequencing, point cloud registration, compression, clustering

These are NNS problems in general.
Domain specific data ⇒ Specical algorithms.

Searching: information retrieval, web searching, map searching, recommendation,
plagiarism detection

A lot of data, but we have to store them anyway.
Vector data (low/high dimensional).
Efficient NNS system is crucial.

I’d see NNS as a searching problem, as the name suggests.

Introduction Low dimensional data High dimensional data MIPS Summary

Applications

What can you do with an efficient NNS?

Learning: Pattern recognition, prediction, classification

Cons: Need to store all the data points.
Model based learning methods are better at this.

Matching: DNA sequencing, point cloud registration, compression, clustering

These are NNS problems in general.
Domain specific data ⇒ Specical algorithms.

Searching: information retrieval, web searching, map searching, recommendation,
plagiarism detection

A lot of data, but we have to store them anyway.
Vector data (low/high dimensional).
Efficient NNS system is crucial.

I’d see NNS as a searching problem, as the name suggests.

Introduction Low dimensional data High dimensional data MIPS Summary

Applications

What can you do with an efficient NNS?

Learning: Pattern recognition, prediction, classification

Cons: Need to store all the data points.
Model based learning methods are better at this.

Matching: DNA sequencing, point cloud registration, compression, clustering

These are NNS problems in general.
Domain specific data ⇒ Specical algorithms.

Searching: information retrieval, web searching, map searching, recommendation,
plagiarism detection

A lot of data, but we have to store them anyway.
Vector data (low/high dimensional).
Efficient NNS system is crucial.

I’d see NNS as a searching problem, as the name suggests.

Introduction Low dimensional data High dimensional data MIPS Summary

Applications

What can you do with an efficient NNS?

Learning: Pattern recognition, prediction, classification

Cons: Need to store all the data points.
Model based learning methods are better at this.

Matching: DNA sequencing, point cloud registration, compression, clustering

These are NNS problems in general.
Domain specific data ⇒ Specical algorithms.

Searching: information retrieval, web searching, map searching, recommendation,
plagiarism detection

A lot of data, but we have to store them anyway.
Vector data (low/high dimensional).
Efficient NNS system is crucial.

I’d see NNS as a searching problem, as the name suggests.

Introduction Low dimensional data High dimensional data MIPS Summary

Applications

What can you do with an efficient NNS?

Learning: Pattern recognition, prediction, classification

Cons: Need to store all the data points.
Model based learning methods are better at this.

Matching: DNA sequencing, point cloud registration, compression, clustering

These are NNS problems in general.
Domain specific data ⇒ Specical algorithms.

Searching: information retrieval, web searching, map searching, recommendation,
plagiarism detection

A lot of data, but we have to store them anyway.
Vector data (low/high dimensional).
Efficient NNS system is crucial.

I’d see NNS as a searching problem, as the name suggests.

Introduction Low dimensional data High dimensional data MIPS Summary

Applications

What can you do with an efficient NNS?

Learning: Pattern recognition, prediction, classification

Cons: Need to store all the data points.
Model based learning methods are better at this.

Matching: DNA sequencing, point cloud registration, compression, clustering

These are NNS problems in general.
Domain specific data ⇒ Specical algorithms.

Searching: information retrieval, web searching, map searching, recommendation,
plagiarism detection

A lot of data, but we have to store them anyway.
Vector data (low/high dimensional).
Efficient NNS system is crucial.

I’d see NNS as a searching problem, as the name suggests.

Introduction Low dimensional data High dimensional data MIPS Summary

Applications

The rest lecture mostly focuses on the most common data space, d-dimensional
vectors, i.e. Ω = Rd .

Introduction Low dimensional data High dimensional data MIPS Summary

d = 1

Sort the data points. Binary search.

Space: O(n); query time: O(log n).

Balanced binary search tree.

Space: O(n); query time: O(log n).

vEB-tree, x-fast trie...

Space: O(n); query time: O(log log u).

Space: O(n); query time: O(log n).

Introduction Low dimensional data High dimensional data MIPS Summary

d = 2

Voronoi diagram

Space: O(n); query time: O(log n).
[Lipton-Tarjan’80]

kd-Tree

Space: O(n); query time: O(log n).
[Lipton-Tarjan’80]

Image by Hristo Hristov
Space: O(n); query time: O(log n) on average.

Introduction Low dimensional data High dimensional data MIPS Summary

Curse of dimensionality

All known data structures that beat O(dn) linear scan query time require O(2d)
space.

Observation (Number of partitions). Splits the data space in each dimension into
two halves, end with 2d partitions.

Think n = 106, d = 100.

Introduction Low dimensional data High dimensional data MIPS Summary

Point Location in Equal Balls (PLEB)

Definition (ε-NN)

Given a point set P and a query point q, we say p̂ ∈ P is an ε-NN of q in P if

D(p̂, q) ≤ (1 + ε)min
p∈P

D(p, q)

Definition (ε-Point Location in Equal Balls (ε-PLEB))

Given a point set P and r ∈ R+, for any query point q,

if minp∈P D(p, q) ≤ r , return a point p′ s.t. D(p′, q) ≤ (1 + ε)r .

if (1 + ε)r ≤ minp∈P D(p, q), return ∅.
if r ≤ minp∈P D(p, q) ≤ (1 + ε)r , return p′ or ∅.

Introduction Low dimensional data High dimensional data MIPS Summary

Indyk-Motwani’98

Algorithm 1 Preprocess

Input: point set P ⊂ {0, 1}d , size ℓ
i.i.d. drawn H ← Hℓ×k

ℓ hash tables T ← {} ∗ ℓ
for p ∈ P do
for j = 1 to ℓ do

Tj [(Hj ,1(p), . . . ,Hj ,k(p))]← p
return T ,H

k = O(log n), ℓ = O(n1/ε)
space: O(nd + n1+1/ε)

Algorithm 2 Query

Input: ℓ hash tables T , ℓ× k hash func-
tions H, query point q ∈ {0, 1}d
A← ∅
for j = 1 to ℓ do
p ← Tj [(Hj ,1(q), . . . ,Hj ,k(q))]
if D(q, p) ≤ r2 then
return p

time: O(n1/εd)

Where H is a family of LSH.

Introduction Low dimensional data High dimensional data MIPS Summary

Indyk-Motwani’98 - Result

Definition (Locality-Sensitive Hashing)

A family H = {h : Ω→ S} is called (r1, r2, p1, p2)-sesitive for metric D if for any
q, p ∈ Ω

if D(p, q) ≤ r1 then Prh∼H[h(q) = h(p)] ≥ p1,

if D(p, q) ≥ r2 then Prh∼H[h(q) = h(p)] ≤ p2,

where p1 > p2 and r1 < r2.

For d dimensional hamming space Ω = {0, 1}d and hamming distance
D(p, q) =

∑d
i=1 1(pi ̸= qi), H = {hi : hI (p) := pi , i = 1, . . . , d} is

(r , r(1 + ε), 1− r
d , 1−

r(1+ε)
d)-sensitive.

Theorem

For any ε > 1, there exists an algorithm for ε-PLEB in {0, 1}d using O(dn + n1+1/ε)
space and O(dn1/ε) query time.

Introduction Low dimensional data High dimensional data MIPS Summary

hyper-cube range query

Random sample a point from a hypercube [0, 1]d . Then the probability of the point
lies within the lenght s hypercube.

Introduction Low dimensional data High dimensional data MIPS Summary

hyper-sphere range query

Random sample a point from a hypercube [0, 1]d . Then the probability of the point
lies within the largest ball that fits entirely within the hypercube.

Introduction Low dimensional data High dimensional data MIPS Summary

Euclidean distance in high dimensional space

In the high dimensional space, the distance between two points is not a good indicator
of their similarity.

Randomly sample 1000 points from a uniform distribution in [−1, 1]d . Then plot the
histagram of the pairwise distances normalized by the max distance.
When d = 1000, 2/24 error will include more than 50% of the points; 3/24 error will
include almost all the points.

Introduction Low dimensional data High dimensional data MIPS Summary

Embedded data

In the AI era, everything is a vector. And the dimension is quite large.

Google’s Universal Sentence Encoder embeds sentences into a space of dimension
512.
GPT-3 embeds documents into space of dimension from 1024 to 12288.

These embeds are not fixed, but learned by minimizing some loss function.

The loss function can be defined in terms of the distances, or the similarities.

Introduction Low dimensional data High dimensional data MIPS Summary

Cosine similarity in high dimensional space

Randomly sample 1000 points from a uniform distribution in [−1, 1]d . Then plot the
histagram of the pairwise consine similarities normalized by the max similarity.

Introduction Low dimensional data High dimensional data MIPS Summary

High dimensional MIPS

There are two main tasks required to develop an efficient MIPS system.

To reduce the number of candidates. e.g. space/data partitioning.

Tree search methods [Muja-Lowe’14; Dasgupta-Freund’08]
Locality sensitive hashing [Shrivastava-Li’14; Neyshabur-Srebro’15;
Indyk-Motwani,’98; Andoni-Indyk-Laarhoven-Razenshteyn-Schmidt’15]
Graph search [Malkov-Yashunin’16; Harwood-Drummond’16]

To speed up evaluation.

Quantization.
Random projection (dimension reduction) [Ailon-Liberty’13]

Introduction Low dimensional data High dimensional data MIPS Summary

Conclusion

A NNS system preprocesses the dataset for fast query.

The objective can be minimizing a distance function or maximizing a similarity
function.

There are many methods exist for low dimensional data.

In high dimensional space, the euclidean distance is not a good measurement of
similarity, people usually use cosine similarity, e.g. MIPS.

In addition to space(data) partitioning, speeding up evaluation is also important
in high dimensional space.

	Introduction
	Low dimensional data
	d=1
	d=2

	High dimensional data
	Curse of dimensionality
	Locality-Sensitive Hashing

	MIPS
	The Problem of Euclidean Distance in HD space

	Summary

