Carnegie Mellon University

Sketching and locality sensitive hashing for alignment

Guillaume Marçais

2/15/23

Why do we need sketching and Locality Sensitive Hashing for alignment?

Large scale alignment problems

Cluster N samples based on sequence similarity

- ullet $ightarrow N^2/2$ alignment problems
- Speed-up pairwise alignment task?
- Skip hopeless alignments?

Sequence search in large database

- Avoid aligning to all sequences in database?
- Approximate nearer neighbor search
- High dimension, non-geometric space

Large scale alignment problems

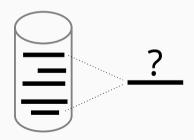
Cluster N samples based on sequence similarity

- ullet $ightarrow N^2/2$ alignment problems
- Speed-up pairwise alignment task?
- Skip hopeless alignments?

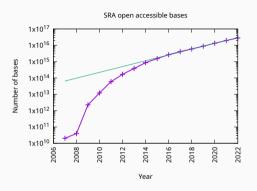


Sequence search in large database

- Avoid aligning to all sequences in database?
- Approximate nearer neighbor search
- High dimension, non-geometric space



Fast growth of sequence databases



- Exponential growth in public and private databases (SRA: $1.5 \times /\mathrm{year}$)
- ⇒ hidden exponential slow down in large scale analysis

Sequence alignment is hard

No strongly subquadratic time algorithm, most likely (Backurs, Indyk 2015)

Computing the edit distance E_d in time $O(n^{2-\delta}), \delta>0$ violates the Strong Exponential Time Hypothesis (SETH).

- lacktriangledown Usual dynamic programming: $O(n^2)$
- ¹Masek and Paterson: $O\left(\frac{n^2}{\log(n)}\right)$

$$n^{2-\delta} \ll \frac{n^2}{\log(n)} \ll n^2$$

Can't fundamentally improve

			Needle	eman-V	Vunsch	1		
match = 1			mismatch = -1			gap = -1		
		G	С	A	т	G	С	G
	0	-1	-2	-3	-4	-5	-6	-7
G	-1	1	0	-1	-2	-3	4	-5
Α	-2	0	0	1 :	0	-1-	2	3
т	-3	-1	-1	ō	2	1 -	- 0	1
т	-4	-2	-2	-1	1	1	0	-1
Α	-5	-3	-3	-1	0	Ô	0	-1
С	-6	-4	-2	-2	-1	-1	1 -	- 0
Α	-7	-5	-3	-1	2	-2	0	0

¹A faster algorithm computing string edit distances (1980)

Sequence alignment is hard

No strongly subquadratic time algorithm, most likely (Backurs, Indyk 2015)

Computing the edit distance E_d in time $O(n^{2-\delta}), \delta>0$ violates the Strong Exponential Time Hypothesis (SETH).

- Usual dynamic programming: $O(n^2)$
- 1 Masek and Paterson: $O\left(\frac{n^{2}}{\log(n)}\right)$
- $n^{2-\delta} \ll \frac{n^2}{\log(n)} \ll n^2$
- Can't fundamentally improve

			Needle	eman-V	Vunsch	1			
n	natch =	1	mismatch = -1			gap = -1			
		G	С	A	т	G	С	G	
	0	-1	-2	-3	-4	-5	-6	-7	
G	-1	1.	0	1 -	2	-3 -	4	-5	
A	-2	0	0	1:	0	-1-	2	3	
т	-3	-1	-1	Ô	2	1 :	- 0	1	
т	-4	-2	-2	-1	1	1 -	0	-1	
A	-5	-3	-3	-1	0	Ô	0	-1	
С	-6	-4	-2	-2	-1	-1	1	0	
Α	-7	-5	-3	-1	2	-2	0	0	

¹A faster algorithm computing string edit distances (1980)

Sequence alignment is hard

No strongly subquadratic time algorithm, most likely (Backurs, Indyk 2015)

Computing the edit distance E_d in time $O(n^{2-\delta}), \delta>0$ violates the Strong Exponential Time Hypothesis (SETH).

- Usual dynamic programming: $O(n^2)$
- 1 Masek and Paterson: $O\left(\frac{n^{2}}{\log(n)}\right)$
- $n^{2-\delta} \ll \frac{n^2}{\log(n)} \ll n^2$
- Can't fundamentally improve

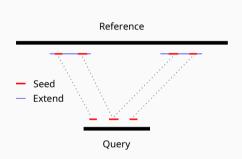
			Needle	eman-V	Vunsch	1				
n	match = 1			mismatch = -1			gap = -1			
		G	С	A	т	G	С	G		
	0	-1	-2	-3	-4	-5	-6	-7		
G	-1	1.	0	1 -	2	-3 -	4	-5		
Α	-2	0	0	1.	- 0	1 -	2	3		
т	-3	-1	-1	ō	2	- 1 -	- 0	1		
т	-4	-2	-2	-1	1	1 :	0	-1		
A	-5	-3	-3	-1	0	Ō	0	-1		
С	-6	-4	-2	-2	-1	-1	1 :	- 0		
Α	-7	-5	-3	-1 -	2	-2	0	0		

¹A faster algorithm computing string edit distances (1980)

Seed and extend paradigm

Main paradigm:

- Find seeds (small exact matches)
- Cluster "coherent" seeds
- Extend between seeds using DP
- Used since the 90s' (Blast, MUMmer)
- Still computationally intensive for large scale
- Many ways to find seeds:
 - *k*-mers
 - Suffix trees/arrays, FM Index
 - LSH / sketching



Sketching / Locality Sensitive Hashing

Avoid computing edit distance directly, use proxy measures easier to compute

- LSH: hashing method to avoid fruitless comparisons
- Sketching: sparse representation allowing quick comparison

Locality Sensitive Hashing: Make collisions matters

$$\mathcal{U}$$
: universe. T : hash table. $|T| \ll |\mathcal{U}|$. $h: \mathcal{U} \to [0, |T| - 1]$. $\mathcal{H} = \{h: \mathcal{U} \to [0, |T| - 1]\}$

$$S = \texttt{AACGGTG}$$

$$h(S) = 2$$

$$0$$

$$2$$

$$3$$

$$4$$

T

S

Universal Hashing

- Collisions as rare as possible
- $\forall x, y \in \mathcal{U}, x \neq y,$

$$\Pr_{h \in \mathcal{H}}[h(x) = h(y)] = \frac{1}{|T|}$$

Locality Sensitive Hashing

- Collision between similar elements
- $\quad \blacksquare \quad \forall x,y \in \mathcal{U}$

$$E_d(x,y) \le d_1 \implies \Pr_{h \in \mathcal{H}}[h(x) = h(y)] \ge p$$

$$E_d(x,y) \ge d_2 \implies \Pr_{h \in \mathcal{H}}[h(x) = h(y)] \le p$$

Locality Sensitive Hashing: Make collisions matters

$$\mathcal{U}$$
: universe. T : hash table. $|T| \ll |\mathcal{U}|$. $h: \mathcal{U} \to [0, |T| - 1]$. $\mathcal{H} = \{h: \mathcal{U} \to [0, |T| - 1]\}$

T

Universal	Hashing
-----------	---------

- Collisions as rare as possible
- $\forall x, y \in \mathcal{U}, x \neq y,$

$$\Pr_{h \in \mathcal{H}}[h(x) = h(y)] = \frac{1}{|T|}$$

Locality Sensitive Hashing

- Collision between similar elements
- $\forall x, y \in \mathcal{U}$

$$E_d(x,y) \le d_1 \implies \Pr_{h \in \mathcal{H}}[h(x) = h(y)] \ge p_1$$

Locality Sensitive Hashing: Make collisions matters

$$\mathcal{U}$$
: universe. T : hash table. $|T| \ll |\mathcal{U}|$. $h: \mathcal{U} \to [0, |T| - 1]$. $\mathcal{H} = \{h: \mathcal{U} \to [0, |T| - 1]\}$

T

Universal Hashing

- Collisions as rare as possible
- $\forall x, y \in \mathcal{U}, x \neq y,$

$$\Pr_{h\in\mathcal{H}}[h(x)=h(y)]=\frac{1}{|T|}$$

Locality Sensitive Hashing

- Collision between similar elements
- $\forall x, y \in \mathcal{U}$

$$E_d(x, y) \le d_1 \implies \Pr_{h \in \mathcal{H}}[h(x) = h(y)] \ge p_1$$

S = AACGGTG

h(S) = 2

$$E_d(x,y) \ge d_2 \implies \Pr_{h \in \mathcal{H}}[h(x) = h(y)] \le p_2$$

Locality Sensitive Hashing Definition

The family \mathcal{H} is " (d_1,d_2,p_1,p_2) -sensitive" for distance D if there exists $d_1 < d_2, \ p_1 > p_2$ such that for all $x,y \in \mathcal{U}$

$$D(x, y) \le d_1 \implies \Pr_{h \in \mathcal{H}}[h(x) = h(y)] \ge p_1$$

 $D(x, y) \ge d_2 \implies \Pr_{h \in \mathcal{H}}[h(x) = h(y)] \le p_2$

- High distance Low collisions
- In between d_1, d_2 : No guarantee

Locality sensitive hash family

Family ${\cal H}$ of hash functions where similar elements are more likely to have the same value than distant elements.

Locality Sensitive Hashing Definition

The family \mathcal{H} is " (d_1,d_2,p_1,p_2) -sensitive" for distance D if there exists $d_1 < d_2$, $p_1 > p_2$ such that for all $x,y \in \mathcal{U}$

$$D(x, y) \le d_1 \implies \Pr_{h \in \mathcal{H}}[h(x) = h(y)] \ge p_1$$

 $D(x, y) \ge d_2 \implies \Pr_{h \in \mathcal{H}}[h(x) = h(y)] \le p_2$

• Probability over choice of $h \in \mathcal{H}$, not over the elements x,y

Locality sensitive hash family

Family ${\cal H}$ of hash functions where similar elements are more likely to have the same value than distant elements.

Locality Sensitive Hashing Definition

The family \mathcal{H} is " (d_1,d_2,p_1,p_2) -sensitive" for distance D if there exists $d_1 < d_2, \ p_1 > p_2$ such that for all $x,y \in \mathcal{U}$

$$D(x, y) \le d_1 \implies \Pr_{h \in \mathcal{H}}[h(x) = h(y)] \ge p_1$$

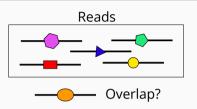
 $D(x, y) \ge d_2 \implies \Pr_{h \in \mathcal{H}}[h(x) = h(y)] \le p_2$

- $d_1 < d_2$: "gapped" LSH
- $d_1 = d_2$, "ungapped" LSH
- Gap not desirable but not always avoidable.

Locality sensitive hash family

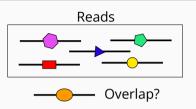
Family ${\cal H}$ of hash functions where similar elements are more likely to have the same value than distant elements.

- Compute overlaps between reads (MHAP²)
- Instance of "Nearest Neighbor Problem" for edit distance
- Use multiple hash tables
- Orange ellipse in same location as yellow circle



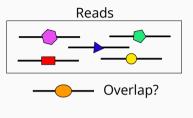
²Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

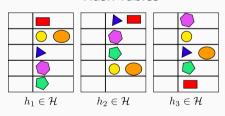
- Compute overlaps between reads (MHAP²)
- Instance of "Nearest Neighbor Problem" for edit distance
- Use multiple hash tables
- Orange ellipse in same location as yellow circle



²Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

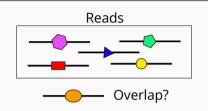
- Compute overlaps between reads (MHAP²)
- Instance of "Nearest Neighbor Problem" for edit distance
- Use multiple hash tables
- Orange ellipse in same location as yellow circle



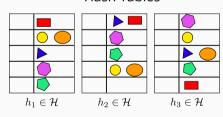


²Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

- Compute overlaps between reads (MHAP²)
- Instance of "Nearest Neighbor Problem" for edit distance
- Use multiple hash tables
- Orange ellipse in same location as yellow circle



Hash Tables



²Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

LSH for the edit distance

How to design an LSH for edit distance?

minHash: LSH for k-mer Jaccard distance

OMH: Ordered Min Hash

LSH for the edit distance

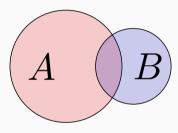
How to design an LSH for edit distance?

minHash: LSH for k-mer Jaccard distance

• OMH: Ordered Min Hash

Jaccard distance

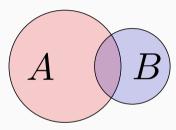
Jaccard distance between sets A, B:



$$J_{d}(A, B) = 1 - \frac{|A \cap B|}{|A \cup B|}$$

Jaccard distance

Jaccard distance between sets A, B:



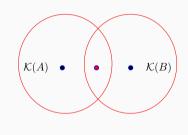
$$J_{d}(A, B) = 1 - \frac{|A \cap B|}{|A \cup B|}$$

Jaccard between sequences x, y: Jaccard distance of their k-mer sets

$$J_{d}(x,y) = J_{d}(\mathcal{K}(x), \mathcal{K}(y))$$

- Low $E_d(x,y) \implies Low J_d(x,y)$
- $\blacksquare \ \ \mathsf{High} \ \mathrm{E}_{\mathrm{d}}(x,y) \ \Longrightarrow \ \ \mathsf{High} \ \mathrm{J}_{\mathrm{d}}(x,y)$
- Can have false positive, few false negative

MinHash: an LSH for the Jaccard distance



• Permutation of k-mers: $\pi:4^k\to 4^k$ one-to-one

$$\mathcal{H} = \{ h_{\pi}(S) = \operatorname*{argmin}_{m \in \mathcal{K}(S)} \pi(m) \mid \pi \text{ permutation of } k\text{-mers} \}$$

• Fix π , every k-mer of $A \cup B$ equally likely to be the minimum for π

$$\Pr_{h \in \mathcal{H}}[h(A) = h(B)] = \frac{|A \cap B|}{|A \cup B|}$$

Unbiased estimator, ungapped LSH

minHash sketch: dimensionality reduction

- Choose L hash functions from \mathcal{H} : h_i , $1 \le i \le L$
- Sketch of S: vector $Sk(S) = (h_i(S))_{1 \le i \le L}$
- Big compression: Mash³ $L = 1000, k = 21,7000 \times$ compression
- Very fast pairwise comparison (Hamming distance between sketches)

$$\mathrm{Sk}(A) = \begin{pmatrix} \mathrm{CGAG} \\ \mathrm{TTAC} \\ \mathrm{CATC} \\ \mathrm{CCAT} \\ \mathrm{CATG} \\ \mathrm{ACAA} \end{pmatrix}, \mathrm{Sk}(B) = \begin{pmatrix} \mathrm{GTTT} \\ \mathrm{TTAC} \\ \mathrm{GTAG} \\ \mathrm{ATTT} \\ \mathrm{ACCC} \\ \mathrm{ACAA} \end{pmatrix} \rightarrow \mathrm{J_d}(\mathcal{K}(A), \mathcal{K}(B)) \approx 1 - \frac{2}{6}$$
 ish: fast genome and metagenome distance estimation using MinHash

³Mash: fast genome and metagenome distance estimation using MinHash

OMH: LSH for the edit distance

• minHash: LSH for *k*-mer Jaccard distance

OMH: Ordered Min Hash

Jaccard ignores k-mer repetition

Jaccard ignores k-mer repetition

Jaccard ignores k-mer repetition

Jaccard distance
$$J_d(x,y)=0$$
 Edit distance $E_d(x,y)\geq 1-\frac{2k}{n}$ Identical k -mer content and high edit distance

Weighted Jaccard: Jaccard on multi-set

•
$$\chi_A : \mathcal{U} \to \{0, 1\},$$

 $\chi_A(x) = 1 \iff x \in A$

•
$$\chi^w_A:\mathcal{U}\to\mathbb{N},$$
 $\chi^w_A(x)=\#$ of instances of x in A

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{\sum_{x \in \mathcal{U}} \min(\chi_A(x), \chi_B(x))}{\sum_{x \in \mathcal{U}} \max(\chi_A(x), \chi_B(x))}$$

Weighted Jaccard: Jaccard on multi-set

•
$$\chi_A : \mathcal{U} \to \{0, 1\},$$

 $\chi_A(x) = 1 \iff x \in A$

•
$$\chi_A^w:\mathcal{U}\to\mathbb{N},$$
 $\chi_A^w(x)=\#$ of instances of x in A

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{\sum_{x \in \mathcal{U}} \min(\chi_A(x), \chi_B(x))}{\sum_{x \in \mathcal{U}} \max(\chi_A(x), \chi_B(x))}$$

$$\mathbf{J}^{\mathbf{w}}(A,B) = \frac{\sum_{x \in \mathcal{U}} \min(\chi_A^w(x), \chi_B^w(x))}{\sum_{x \in \mathcal{U}} \max(\chi_A^w(x), \chi_B^w(x))}$$

Weighted Jaccard handles repetitions

Weighted Jaccard
$$J^{\mathrm{w}}_{\mathrm{d}}(x,y)=1-\frac{k+2}{n}$$
 Edit distance $E_{\mathrm{d}}(x,y)\geq 1-\frac{2k}{n}$ Weighted Jaccard = Jaccard for multi-sets

Jaccard and weighted Jaccard ignore relative order

 $x = \mathtt{CCCCACCAACACAAAACCC}$

 $y = \mathtt{AAAACACAACCCCACCAAA}$

Jaccard and weighted Jaccard ignore relative order

$$x = \texttt{CCCCACCAACACAAAACCC} \qquad \rightarrow \left\{ \substack{\texttt{AAAA}, \texttt{AAAC}, \texttt{ACCA}, \texttt{ACCC}, \texttt{ACCA}, \texttt{ACCC}, \texttt{ACCC}, \texttt{ACCC}, \texttt{ACCC}} \\ y = \texttt{AAAACACAACCCCACCAAAA} \qquad \rightarrow \left\{ \substack{\texttt{AAAA}, \texttt{AAAC}, \texttt{AACA}, \texttt{AACC}, \texttt{ACCA}, \texttt{ACCC}, \texttt{ACCCC}, \texttt{ACCC}, \texttt{ACCC}, \texttt{ACCCC}, \texttt{ACCC}, \texttt{ACCC}, \texttt{ACCC}, \texttt{ACCC}, \texttt{ACCC}, \texttt{ACCC}, \texttt{ACC$$

x,y : de Bruijn sequences, contain all 16 possible 4-mers once $(\sigma!)^{\sigma^{k-1}} \text{ de Bruijn sequences of length } \sigma^k + \sigma - 1$

Jaccard and weighted Jaccard ignore relative order

$$x = \texttt{CCCCACCAACAACACAAACCC} \qquad \rightarrow \begin{cases} \texttt{AAAA,AAAC,AACA,AACC,ACAA,ACCC,ACCA,ACCC} \\ \texttt{CAAA,CAAC,CACA,CACC,CCCA,CCCC} \end{cases} \\ y = \texttt{AAAACACAACCCCACCAAAA} \qquad \rightarrow \begin{cases} \texttt{AAAA,AAAC,AACA,AACC,ACAA,ACAC,ACCA,ACCC} \\ \texttt{CAAA,CAAC,CACA,CACC,CCCAA,CCCC} \end{cases}$$

$$x,y$$
: de Bruijn sequences, contain all 16 possible 4 -mers once $(\sigma!)^{\sigma^{k-1}}$ de Bruijn sequences of length $\sigma^k+\sigma-1$

$$J_{d}(x,y) = J_{d}^{w}(x,y) = 0$$
 $E_{d}(x,y) = 0.63$

Jaccard is different from edit distance

Unlike edit distance, k-mer Jaccard is insensitive to:

- 1. *k*-mer repetitions
- 2. relative positions of k-mers

- *k*-mer Jaccard is not an LSH for the edit distance
- Still provides big computation saving: asymmetric error model

Jaccard is different from edit distance

Unlike edit distance, k-mer Jaccard is insensitive to:

- 1. *k*-mer repetitions
- 2. relative positions of k-mers

- k-mer Jaccard is not an LSH for the edit distance
- Still provides big computation saving: asymmetric error model

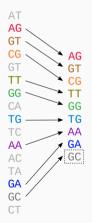
OMH: Order Min Hash

- minHash is an LSH for Jaccard
- OMH is a refinement of minHash
- OMH is sensitive to
 - $\quad \blacksquare \quad \text{repeated} \ k\text{-mers}$
 - ullet relative order of k-mers

$$S = \mathtt{AGTTGAGCGGAAGGTG}, \ k = 2$$

$$S = \mathtt{AGTTGAGCGGAAGGTG}, \ k = 2$$

 π : permutation of Σ^k



$$S = \text{AGTTGAGCGGAAGGTG}, k = 2, L = 3$$

 π : permutation of Σ^k

```
1 2 3
AG GG CG
GT GA GA
CG CG TG
TT AG AG
GG GC GC
TG GT GG
AA AA TT
GA TT AA
GC TG GT
```

$$S = {\tt AGTTGAGCGGAAGGTG}, k = 2, L = 3$$

 π : permutation of Σ^k

```
1 2 3
AG GG CG
GT GA GA
CG CG TG
TT AG AG
GG GC GC
TG GT GG
AA AA TT
GA TT AA
GC TG GT
```

$$S = \text{AGTTGAGCGGAAGGTG}, k = 2, L = 3$$

 π : permutation of Σ^k

Order: permutation of $\Sigma^k \times \{1, \dots, n\}$

1 2 3
AG GG CG
GT GA GA
CG CG TG
TT AG AG
GG GC GC
TG GT GG
AA AA TT
GA TT AA
GC TG GT

```
GA, 4
TG, 3
AG, 5
GT, 1
GT, 13
AA, 10
AG, 11
TT, 2
AG, o
CG, 7
GG, 12
GC, 6
TG, 14
GG, 8
GA, 9
```

$$S = \text{AGTTGAGCGGAAGGTG}, k = 2, L = 3, \ell = 2$$

 π : permutation of Σ^k

1 2 3
AG GG CG
GT GA GA
CG CG TG
TT AG AG
GG GC GC
TG GT GG
AA AA TT
GA TT AA
GC TG GT

```
GA. 4 CG, 7 GT, 13 AG, 0 AA, 10 GA, 9
TG, 3 TG, 14 GA, 4 TT, 2 GT, 13 GG, 8
AG, 5 AG, 0 GA, 9 AG, 11 GA, 9 GC, 6
GT, 1 GA, 9 TG, 3 AG, 5 GT, 1 TG, 14
GT. 13 AG. 5 AG. 5 AA. 10 AG. 5 GT. 13
AA, 10 AG, 11 CG, 7 GT, 13 TT, 2 TT, 2
AG, 11 GA, 4 TT, 2 CG, 7 GA, 4 AA, 10
TT, 2 GT, 13 AA, 10 GG, 8 CG, 7 AG, 0
AG, 0 TT, 2 GG, 12 GA, 4 AG, 0 CG, 7
CG, 7 TG, 3 GG, 8 GA, 9 TG, 3 GG, 12
GG, 12 GG, 8 TG, 14 TG, 14 GG, 8 AG, 11
GC, 6 AA, 10 GT, 1 TG, 3 GG, 12 TG, 3
TG, 14 GG, 12 AG, 11 GC, 6 GC, 6 GT, 1
GG, 8 GT, 1 GC, 6 GT, 1 AG, 11 GA, 4
GA, 9 GC, 6 AG, 0 GG, 12 TG, 14 AG, 5
```

$$S = \text{AGTTGAGCGGAAGGTG}, k = 2, L = 3, \ell = 2$$

 π : permutation of Σ^k

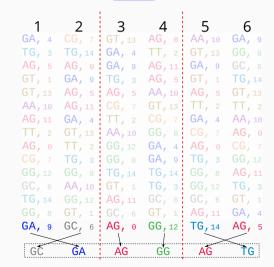
1 2 3
AG GG CG
GT GA GA
CG CG TG
GT AG AG
GG GC GC
TG GT GG
AA AA TT
GA TT AA
GC TG GT

```
1 2 3 4 5
GA, 4 CG, 7 GT, 13 AG, 0 AA, 10 GA, 9
TG, 3 TG, 14 GA, 4 TT, 2 GT, 13 GG, 8
AG, 5 AG, 0 GA, 9 AG, 11 GA, 9 GC, 6
GT, 1 GA, 9 TG, 3 AG, 5 GT, 1 TG, 14
AG, 11 GA, 4 TT, 2 CG, 7 GA, 4 AA, 10
AG, 0 TT, 2 GG, 12 GA, 4 AG, 0 CG, 7
CG, 7 TG, 3 GG, 8 GA, 9 TG, 3 GG, 12
GG, 8 GT, 1 GC, 6 GT, 1 AG, 11 GA, 4
GA, 9 GC, 6 AG, 0 GG, 12 TG, 14 AG, 5
```

$$S = \text{AGTTGAGCGGAAGGTG}, k = 2, L = 3, \ell = 2$$

 π : permutation of Σ^k

1 2 3
AG GG CG
GT GA GA
CG CG TG
TT AG AG
GG GC GC
TG GT GG
AA AA TT
GA TT AA
GC TG GT



$$S = \text{AGTTGAGCGGAAGGTG}, k = 2, L = 3, \ell = 2$$

Jaccard:

$$Sk(S) = \begin{pmatrix} GC \\ TG \\ GT \end{pmatrix}$$

OMH:

$$\operatorname{Sk}(S) = \left(egin{matrix} \operatorname{GC} & \operatorname{CA} \\ \operatorname{AG} & \operatorname{GG} \\ \operatorname{AG} & \operatorname{TG} \end{matrix}
ight)$$

OMH is a LSH for edit distance

Theorem: OMH is a LSH for edit distance

There exists (d_1, d_2, p_1, p_2) such that OMH is sensitive for the edit distance.

- p_1 : related to probability of hash collisions of weighted Jaccard
- p_2 : related to length of increasing sequence given weighted Jaccard

Practical considerations with Jaccard sketches

Jaccard:

- Can use canonical k-mers
- Difficult to find independent hashes: use bottom sketches $(L \ll n)$

OMH:

- ℓ times as large (cost to encode order)
- $\ell=1$: LSH / unbiased estimator of weighted Jaccard
- Can't use canonical k-mers: double sketch

OMH has a large gap

- |S| = 100, k = 5
- Current proof has a large gap
- What is smallest gap possible?
- OMH/minHash similar to embedding in Hamming space: gap probably unavoidable

