Carnegie /
Mellon
University

Sketching and locality sensitive hashing for alignment

Guillaume Marcais
2/15/23

Why do we need sketching and Locality Sensitive Hashing for
alignment?

Large scale alignment problems

Cluster N samples based on
sequence similarity

= — N?2/2 alignment problems
= Speed-up pairwise alignment task?

= Skip hopeless alignments?

Large scale alighment problems

Cluster N samples based on

Sequence search in large database
sequence similarity

= Avoid aligning to all sequences in database?
= — N?2/2 alignment problems

= Approximate nearer neighbor search
= Speed-up pairwise alignment task?

= High dimension, non-geometric space
= Skip hopeless alignments?

(e

Fast growth of sequence databases

SRA open accessible bases

1x10'7 ¢ T T T T T T T
1x10'6 |
g x105 F
2 £
g E
o Ix10M
5
© E
£ xioB g
E £
Z 1x10"? ¢
110" E
1)(1010 £ 1 1 1 1 1 1 1
o 0 o o~ < O 0 o o~
g 8 2 ¥ ¥ 2 2 2
o o o o o o o o o
o~ ~N o~ o~ ~N ~N ~N o~ ~N
Year

= Exponential growth in public and private databases (SRA: 1.5x /year)

= — hidden exponential slow down in large scale analysis

Sequence alignment is hard

No strongly subquadratic time algorithm, most likely (Backurs, Indyk 2015)

Computing the edit distance Eq in time O(n?7?%),§ > 0 violates the Strong Exponential
Time Hypothesis (SETH).

Needleman-Wunsch

match = 1 mismatch = -1

o
5}

3
I

= Usual dynamic programming: O(n?)

G ¢ A T 6 c a
o1 2 8 4 5 6 7
~
G 4 |1+0/12 345
*
A 2 0o o |1focai2:3
A%
T 3 -1 -1 0 2 1 0 -1
S
T 4 2 2 -1 1 1 0 -1
Kt
A 5 -3 -3 -1 0 0 0 -1
A
c 6 4 2 2 4 1140
~
A 7 5 3 a4+2 2 0|0

Sequence alignment is hard

No strongly subquadratic time algorithm, most likely (Backurs, Indyk 2015)

Computing the edit distance Eq in time O(n?7?%),§ > 0 violates the Strong Exponential
Time Hypothesis (SETH).

Needleman-Wunsch

match = 1 mismatch = -1 gap =-1

= Usual dynamic programming: O(n?)

G [A T G c G
1 5 0 \71 2 3 4 5 6 7
= “Masek and Paterson: O (IOQW) o alifelaeiaiats
A 2 0 0 1 0 -1 -2 -3
- 2—0 n2 2 T 3 4 4 g '\2 1 0 1
n < Tog() <n . =t LN ;
4 - - -1 1 1 1
A 5 3 3 4 0 \3 0 -
S
[6 -4 2 2 -1 -1 1 0
w
A 7 5 -3 -1 2 2 0 0

A faster algorithm computing string edit distances (1980)

Sequence alignment is hard

No strongly subquadratic time algorithm, most likely (Backurs, Indyk 2015)

Computing the edit distance Eq in time O(n?7?%),§ > 0 violates the Strong Exponential
Time Hypothesis (SETH).

Needleman-Wunsch

match = 1 mismatch = -1 gap =-1

= Usual dynamic programming: O(n?)

G c A T G [G
1 2 0 \71 2 3 4 5 6 7
= “Masek and Paterson: O (IOQW) o a1 Folaiziaas
2) A 2 0 0 \1 0 -1 2 -3
2—0 n 2 PR

=N < <n T 8 a4 a0 2410 a
log(n) T 4 2 2 4 \: \1 0 1

. A
= Can’t fundamentally improve SEIEIRIEAEIR S KR
c 6 4 2 2 4 a/1+0
A 7 5 3 4.2 2 0 \o

A faster algorithm computing string edit distances (1980)

Seed and extend paradigm

Main paradigm:
= Find seeds (small exact matches)

s Cluster “coherent” seeds Reference

= Extend between seeds using DP —_ I

» Used since the 90s’ (Blast, MUMmer) = =2l

— Extend y S
= Still computationally intensive for large scale Loae

= Many ways to find seeds: Query

= k-mers
= Suffix trees/arrays, FM Index
= LSH / sketching

Sketching / Locality Sensitive Hashing

Avoid computing edit distance directly, use proxy measures easier to compute
» LSH: hashing method to avoid fruitless comparisons

» Sketching: sparse representation allowing quick comparison

Locality Sensitive Hashing: Make collisions matters

U: universe. T: hash table. |T| < [U|. h:U — [0,|T| — 1].
H={h:U—[0,|T|—-1]}

S = AACGGTG
h(S) =2

AlWIN|=|O
n

Locality Sensitive Hashing: Make collisions matters

U: universe. T: hash table. |T| < [U|. h:U — [0,|T| — 1].
H={h:U—[0,|T|—-1]}

S = AACGGTG
h(S) =2

AlWIN|=|O
n

Universal Hashing
= Collisions as rare as possible
" vx? y 6 u? €T # y?

1

B [h(@) = hiw)] =

Locality Sensitive Hashing: Make collisions matters

U: universe. T: hash table. |T| < [U|. h:U — [0,|T| — 1].
H={h:U—[0,|T|—-1]}

S = AACGGTG
h(S) =2

AlWIN|=|O
n

Locality Sensitive Hashing

Universal Hashing . o
= Collision between similar elements

= Collisions as rare as possible

» Vo,yelU,x #y,

s Ve,yel

Eq(z,y) <di = Pr[h(z) = h(y)] = p1

1 heH
Pr [h(z) = h(y)] = —
heH[(2))] IT] Eu(z,y) > dp = hfé%[h(x) = h(y)] < p2

Locality Sensitive Hashing Definition

The family H is “(dy, d2, p1, p2)-sensitive” for
distance D if there exists di < da, p1 > p2 such
that for all z,y € U

D(z,y) <d;y = Pr[h(z) = h(y)] > p1 Locality sensitive hash family

X » h;H . o < Family H of hash functions where
(x,y) > dy = heg{[(z) = h(y)] < p2 similar elements are more likely to

have the same value than distant
= Low distance <= High collisions elements.
= High distance <= Low collisions

= In between d;,d>: No guarantee

Locality Sensitive Hashing Definition

The family H is “(dy, d2, p1, p2)-sensitive” for
distance D if there exists di < da, p1 > p2 such
that for all z,y € U

D(z,y) <d;y = Pr[h(z) = h(y)] > p1 Locality sensitive hash family
heH . .
>d , , _ Family H of hash functions where
D(z,y) 2 d» = ;}Z%[(z) = h(y)] < p2 similar elements are more likely to
have the same value than distant
= Probability over choice of h € H, elements.

not over the elements z,y

Locality Sensitive Hashing Definition

The family H is “(dy, d2, p1, p2)-sensitive” for
distance D if there exists di < da, p1 > p2 such
that for all z,y € U
< = >
D(z,y) <di = hfe’g_[[h(l’) h(y)] = p
D >d Pr [h(x) =h <
(z,9) 2 d2 = Pr [h(z) = h(y)] < p2
= dy < do: “gapped” LSH
= dy = do, "ungapped” LSH
= Gap not desirable but not always

avoidable.

Locality sensitive hash family

Family H of hash functions where
similar elements are more likely to
have the same value than distant

elements.

Overlap computation

Reads

— O ——
= _O_

—@O— Overlap?

= Compute overlaps between reads (MHAP?)

2 Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

Overlap computation

Reads

— O ——
= _O_

—@O— Overlap?

= Compute overlaps between reads (MHAP?)

= Instance of “Nearest Neighbor Problem” for
edit distance

2 Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

Overlap computation

= Compute overlaps between reads (MHAP?) Overlap?

= Instance of “Nearest Neighbor Problem” for

edit distance Hash Tables

» Use multiple hash tables [| (0]
@) () @)
> 3 > O
() 0@ [®
8 m
hieH hy € H hs € H

2 Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

Overlap computation

= Compute overlaps between reads (MHAP?) Overlap?

= Instance of “Nearest Neighbor Problem” for
edit distance Hash Tables

= Use multiple hash tables [b [0)
0 L . . @) () @)
= Orange ellipse in same location as yellow circle > © > O
(@) o0@®| [®
© m
hi € H ho €H hs € H

2 Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

LSH for the edit distance

How to design an LSH for edit distance?

10

LSH for the edit distance

How to design an LSH for edit distance?

= minHash: LSH for k-mer Jaccard distance

= OMH: Ordered Min Hash

10

Jaccard distance

Jaccard distance between sets A, B:

|AN B|

Ja(A,B)=1—
d(?) ‘AUB‘

11

Jaccard distance

Jaccard distance between sets A, B:
Jaccard between sequences z,y:

Jaccard distance of their k-mer sets
Ja(z,y) = Ja(K(x), K(y))

» Low E4(z,y) = Low J4q(z,y)

|AN B = Can have false positive, few false

Ja(A,B)=1—
() |AU B| negative

11

MinHash: an LSH for the Jaccard distance

» Permutation of k-mers: 7 : 45 — 4% one-to-one

H = {h(S) = argmin7(m) | 7 permutation of k-mers}
melkl(S)

= Fix 7, every k-mer of AU B equally likely to be the

minimum for 7

B _JANnB|
23 A = R(B) = g

= Unbiased estimator, ungapped LSH

12

minHash sketch: dimensionality reduction

Choose L hash functions from H: h;,1 <: < L
Sketch of S: vector Sk(S) = (h;(5))1<i<rL
= Big compression: Mash® L = 1000, k = 21, 7000 x compression

= Very fast pairwise comparison (Hamming distance between sketches)

CGAG GTTT
TTAC TTAC
CATC GTAG 2
Sk(A) = . Sk(B) = — Ja(K(A),K(B) ~1- =
(A= | cops | KB = | alK(A), K(B)) ~ 1 - 2
CATG ACCC
ACAA ACAA

3Mash: fast genome and metagenome distance estimation using MinHash

13

OMH: LSH for the edit distance

= minHash: LSH for k-mer Jaccard distance

= OMH: Ordered Min Hash

14

Jaccard ignores k-mer repetition

—k k
- —N
o = AAAAAAAAAAAAAAA CCCCC

y = AAAAA CCCCCCCCCCCCCCC
k k
P

15

Jaccard ignores k-mer repetition

n—k k
—N
x = AAAAAAAAAAAAAAACCCCC — {AAAAA, AAAAC, AAACC, AACCC, ACCCC, CCCCC}

y = AAAAA CCCCCCCCCCCCCCC — {AAAAA, AAAAC, AAACC, AACCC, ACCCC, CCCCC}
k n—k

15

Jaccard ignores k-mer repetition

n—k k
—N
x = AAAAAAAAAAAAAAACCCCC — {AAAAA, AAAAC, AAACC, AACCC, ACCCC, CCCCC}

y = AAAAA CCCCCCCCCCCCCCC — {AAAAA, AAAAC, AAACC, AACCC, ACCCC, CCCCC}
k n—k

Jaccard distance J4(z,y) =0 Edit distance Eq(z,y) > 1 — %k

Identical k-mer content and high edit distance

15

Weighted Jaccard: Jaccard on multi-set

_ ’AQB’ _ Z:reZ/{ min(XA(x)7XB(x))
[AUB| ¥ qqmax(xa(z), xp())

= xa:U—{0,1}, J(A, B)
xalr)=1 <+ zc A

16

Weighted Jaccard: Jaccard on multi-set

_ ’AQB’ _ Z:reZ/{ min(XA(x)7XB(x))
[AUB| ¥ qqmax(xa(z), xp())

s xa:U—{0,1}, J(4, B)
xalr)=1 <+ zc A

= x4 :U =N, w _ Ppaumin(x4 (@), xB(z))
JY(A,B) = =
X4 (z) = # of instances of z in A > rey max(x 4 (z), Xg(x))

16

Weighted Jaccard handles repetitions

_k k
L —
x = AAAAAAAAAAAAAAACCCCC — {(AAAAC 1

(AAAAA,1),(AAAAA,2),. .. (AAAAA,1T)
),(AAACC,1),(AACCC,1),(ACCCC,1),(CCCCC,1)

),(AAAAC,1),(AAACC,1),(AACCC,1),(ACCCC, 1),
(ccecc,1),(ccece,2),....,(ceeee, 11)

y = AAAAA CCCCCCCCCCCCCCC — {(A“A“’l
k k
Y

Weighted Jaccard JY (z,y) = 1 — ££2 Edit distance Eq(z,y) > 1 — 2k

n

Weighted Jaccard = Jaccard for multi-sets

17

Jaccard and weighted Jaccard ignore relative order

o = CCCCACCAACACAAAACCC

y = AAAACACAACCCCACCAAA

18

Jaccard and weighted Jaccard ignore relative order

- AAAA,AAAC,AACA,AACC,ACAA,ACAC,ACCA,ACCC
x = CCCCACCAACACAAAACCC — {CAAA:CAAC,CACAzCACCZCCAA:CCACZCCCA:CCCC}

_ AAAAAAAC,AACA,AACC,ACAA,ACAC,ACCA,ACCC
y = AAAACACAACCCCACCAAA — {CAAA,CAAC,CACA,CACC,CCAA,CCAC,CCCA,CCCC}

x,y: de Bruijn sequences,
contain all 16 possible 4-mers once
(U!)"k_1 de Bruijn sequences of length o* + 0o — 1

18

Jaccard and weighted Jaccard ignore relative order

o AAAA,AAAC,AACA,AACC,ACAA, ACAC,ACCA,ACCC
x = CCCCACCAACACAAAACCC — {CAAA:CAAC,CACAzCACCZCCAA:CCACZCCCA:CCCC}
o AAAA,AAAC,AACA,AACC,ACAA ACAC,ACCA,ACCC
y = AAAACACAACCCCACCAAA — {CAAA,CAAC,CACA,CACC,CCAA,CCAC,CCCA,CCCC}
x,y: de Bruijn sequences,

contain all 16 possible 4-mers once
(U!)"k_1 de Bruijn sequences of length o* + 0o — 1

18

Jaccard is different from edit distance

Unlike edit distance, k-mer Jaccard is insensitive to:

1. k-mer repetitions

2. relative positions of k-mers

19

Jaccard is different from edit distance

Unlike edit distance, k-mer Jaccard is insensitive to:

1. k-mer repetitions

2. relative positions of k-mers

= k-mer Jaccard is not an LSH for the edit distance

= Still provides big computation saving: asymmetric error model

19

OMH: Order Min Hash

= minHash is an LSH for Jaccard

= OMH is a refinement of minHash
= OMH is sensitive to

= repeated k-mers
= relative order of k-mers

20

minHash & OMH sketches

S = AGTTGAGCGGAAGGTG, k = 2

21

minHash & OMH sketches

S = AGTTGAGCGGAAGGTG, k = 2
m: permutation of ¥*

21

minHash & OMH sketches

S = AGTTGAGCGGAAGGTG, k=2, L =3
m: permutation of ¥*

1 2 3
GG

GT GA GA

21

minHash & OMH sketches

S = AGTTGAGCGGAAGGTG, k=2, L =3
m: permutation of ¥*

21

minHash & OMH sketches

S = AGTTGAGCGGAAGGTG, k=2, L =3
m: permutation of ¥* Order: permutation of ©* x {1,...,n}

GA, 4
TG, 3
1 2 3 AG, s
GT, 1
GT, 13
AA, 10
AG, 11
TT, 2
AG, o

.GC_TG_GT GG, 12
GC, 6
TG, 14
GG, s
GA, o

21

minHash & OMH sketches

S = AGTTGAGCGGAAGGTG, k=2, L =3, £ =2
7: permutation of %F
1 2 3 4 5 6
GA, 4 GT,13 AG, o AA,10 GA, 9
TG, 3 TG,14 GA, 4 TT, 2 GT,13 GG, 8
12 3 AG, s AG, o GA, s AG,11 GA, s GC, 6
GT, 1 GA, o TG, 3 AG, s GT,
GT,13 AG, s AG, 5 AA,10 AG,
AA,10 AG,11 GT,13 TT, TT, 2
AG,11 GA, 4 TT, 2 GA, AA, 10
TT, 2 GT,13 AA,10 GG, 8 AG, o
AG, o TT, 2 GG,12 GA, 4 AG, o
TG, 3 GG, s GA, 9 TG, 3 GG, 12
iGC TG GTi GG,12 GG, 8 TG,14 TG,14 GG, 8 AG,11
"""""""""""""""" ‘ GC, 6 AA,10 GT, 1 TG, 3 GG,12 TG, 3
TG,14 GG,12 AG,12 GC, s GC, 6 GT, 1
GG, 8 GT, 1 GC, 6 GT, 1 AG,11 GA, 4
GA, 9 GC, s AG, o GG,12 TG,14 AG, s

TG, 14
GT, 13

AN O R

21

minHash & OMH sketches

S = AGTTGAGCGGAAGGTG, k=2, L =3, £ =2
m: permutation of ¥*

1 2 3 4 5 6

GA, 9 GC, s AG, o GG,12 TG,14 AG, 5

21

minHash & OMH sketches

S = AGTTGAGCGGAAGGTG, k=2, L =3, £ =2
m: permutation of ¥*

1 213 4.5 6

GA, 9 GC, 6! AG, o GG,12: TG,14 AG, s
P i
i GC GA_! AG GG_i_ AG___ 1G]

21

minHash & OMH sketches

S = AGTTGAGCGGAAGGTG, k=2, L. =3, £=2

Jaccard: OMH:
GC GC CA

Sk(S) = | TG Sk(S) = | AG GG
GT AG TG

21

OMH is a LSH for edit distance

Theorem: OMH is a LSH for edit distance
There exists (d1,da, p1,p2) such that OMH is sensitive for the edit distance.

= pp: related to probability of hash collisions of weighted Jaccard

= po: related to length of increasing sequence given weighted Jaccard

22

Practical considerations with Jaccard sketches

OMH:
Jaccard: = / times as large (cost to encode order)
= Can use canonical k-mers = {=1: LSH / unbiased estimator of
= Difficult to find independent hashes: weighted Jaccard

use bottom sketches (L < n) = Can't use canonical k-mers: double

sketch

23

OMH has a large gap

1 T T T I
0.8
= |S|=100,k=5
= Current proof has a large gap a
I 0.6
= What is smallest gap E
possible? 2
© 0.4
= OMH/minHash similar to =~
embedding in Hamming 09
space: gap probably '
unavoidable
0

0 0.2 0.4 0.6 0.8 1
similarity s
24

