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e Streaming framework (streaming data, streaming algorithm)
e Streaming problems
— Frequency estimation
— heavy hitters detection
Streaming algorithms/sketches for above problems
— Misra-Gries Sketch
— Count Sketch
— Count-Min Sketch
Biased vs unbiased approximation
Probabilistic analysis objectives
Probabilistic analysis techniques
— Markov’s inequality
— Chebyshev’s inequality
— Hoeffding’s inequality
This note mainly refers to [Phillips, 2021, Chapter 11].

1 Frequency Estimation in Stream

Data, problems, constraints, and the notations.

Given:
e A universe [u], which is too big to store in memory, usually lg u will be a constant.
e A stream (sequence) X = (z1,x2,...,%,), ; € [u] for all i € [n].

Goal: Count all the items, so you can return the frequency of any query q € [u]:

clg) ==Y U(z,q9), flg):= o)

n
zeX

Where 1 is the indicator function, 1(z,q) =1 if x = ¢, 1(x,¢) = 0 otherwise. We know the space
lower bound: Q(n).
Streaming implies:
e we cannot store the whole data in memory, space have to be independent of n (logn is fine,
some paper allows log? n).
e we can only process X once, from x1 to x, (some paper allows multiple passes, but we will
stay with 1 pass).
Motivation: DDoS attack detection at router, i.e., detect high frequency IP addresses with
limited memory.
The compromised goal is: fg, the e-approximation of f, s.t. for all ¢ € [u]:

fla)—e < fo(q) < fg) +e¢

The key problem of this note is to find a streaming data structure for f-. We will see 3 of such
data structures in this note.

1.1 Heavy Hitters in Stream

A highly related problem is to find the ¢-heavy hitters. y € [u] is a ¢-heavy hitter iff f(y) > ¢.
The e-approximation of the ¢-heavy hitters, H? , 18 a set such that:



o ye HZ if f(y) > ¢.
oy HZif f(y) < o —e.

If $ — e < f(y) < ¢, then y may or may not be in H?.
If you have fa, then you have fI;’ for any ¢ > €.

Lemma 1. Given f., if ¢ > ¢, then H := {y € [u] | f-(y) > ¢ — ¢} is a f[(f

Proof. If f(y) > ¢, then fo(y) > f(y) —e > ¢ —e, so y € Y. The second requirement of the Efi is
trivial since there is no y s.t. f(y) < Os. O

2 Misra-Gries Sketch

2.1 Majority

Majority problem: Find y if f(y) > % Equivalent to the 1/2-approximation of the 1/2-heavy

: Fr1/2 1/2
hitter, Hl//27 y € Hl//2 if f(y) > 1.

Algorithm 1, a beautiful algorithm by Boyer and Moore [1981], Moore [1981], solve the majority
problem in with O(log u + log n) space, actually just a key and a counter, if a single machine word

fits each, then the space is O(1), 2 words + code, cannot be less.

Algorithm 1: Majority(X)

1 y<+ NaN,c+ 0

2 forall z € X do

3 if y=xthenc+ c+1

4 else if c=0then y+ z,c+ 1
5

6

elsec+c—1
return y

Theorem 2. If there is a majority z in X, i.e. nf(z) > n/2, then the Algorithm 1 outputs z after
processed X .

Here is one way to get an insight into the correctness of the algorithm. When Line 5 is executed,
the algorithm must have seen a pair of distinct items x; # xj,7 < j, x; = y,x; = . And the result
state of the algorithm will be the same if x;,2; was not in the stream. If there is a majority z in
X, i.e. nf(z) > n/2, then there are at most n — nf(z) < n/2 pairs of distinct items. If you delete
all these pairs, the rest will be a sequence of all z’s, so the algorithm will output z.

Another way to see the correctness, is to understand two factors when ¢ reach 0:

e The algorithm goes back to inital state and starts to process the rest of the sequence. This

mean the output of the whole sequence will be the same with the output of the rest sequence.

e The majority of the whole sequence must be the majority of the rest sequence as well.

Both of these two ways can be formalized into a proof by induction.

2.2 Misra-Gries Sketch

Misra and Gries [1982] extends the majority algorithm by increasing the number of keys and
counters from 1 to k, so that the algorithm can solve the generalize majority problem: find the
g-approximation of the e-heavy hitters, HS, i.e. y € HE if f(y) > e.



Algorithm 2: Misra-Gries(X, k)

1Y < [NaN] xk,C < [0] x k
2 forall x € X do

3 if 3i(Y[i] = z) then C[i| + C[i] + 1

4 else if 3i(C[i] = 0) then Y[i] + z,C[i] + Cli] +1
5 else

6 forall i do Ci] < C[i] — 1

7 return Y, C

To approximate the frequency of any ¢ € [u}, return

. 07[1] . g
ot = { 301 =0

0 otherwise

Lemma 3. Above approzimation of the frequency satisfies

for all q € [u].

The upper bound is obvious. The lower bound depens by the number of times Line 6 executes.
When Line 6 executes, there must be k+ 1 distinct item are decremented. It can hapen at most
n/(k+ 1) times.

Theorem 4. If k > % — 1, then the output of Algorithm 2, fMG s an fs.

1

T =& we have

Proof. Use Lemma 3, set

fl@) —¢ < fuala) < f9) < fla) +¢
and k=1 —1. O
Theorem 5. If k > % — 1, then the output of Algorithm 2, Y is a lﬁlg

Proof. 1f f(y) > ¢, then f(y) —e > 0. By Lemma 3, we have

1 —_
k+1

soyeY. O

fuc(y) = fy) fly)—e>0,

3 Count Sketch

Count sketch is a hashing based streaming data structure presented by Charikar et al. [2002].

Before processing the stream, Algorithm 3 initialize counters C' with ¢ x k 0s, randomly draw
a set of t hash functions H; : [u] — [k], and another set of ¢ has functions S; : [u] — [£1]. S; must
be drawn from a pairwise independent family.



Algorithm 3: Count-Sketch(X, ¢, k)

1 C <+ 0F H « (H;: [u] — [k])i_,, S « (Si: [u] — [£1))i,
2 forall x € X do

3 forall i in [t| do
5 Cij < Cij+ S;(x)
6 return C, H, S
Hy S1 Cip Cip2 Crk
H, Sa Co1 Ca2 Cox
H= S = |7
H; St Ci1 Cia ... Cup
During a query for ¢ € [u], we will first calculate ¢ different frequency approximations fz(q) =
fS (0)Cs,m,(g) for all i € [t]. Then we return the median of these as the final frequency approxima-
tlon of q.

fos(q) := median fz(q)
i€[t]

Since the algorithm is not deterministic, it is randomized. We will analize it in a probabilistic
way. Before that, we must be clear about the following question.

Question 1. Where is the randomness come from? Or what are the random variables?

Answer. The randomness comes from the choice of hash functions in H and S. So the random
variables are H;s and S;s for all i € [t]. Yes, these are functions, not common variables. If you have
dificulty to think functions as variables, you can go one step further, H;(q) and S;(q) are the real
random variables behind these functions (for all ¢ € [u]). O

So in the following probabilistic analysis, all the probabilities are with respect to the random
choice of hash functions in H and S.

To simply the notation, let C¥. := nf(x)S;(x)1(H;(x),j) be the random variable for the part
of C; j caused by z, s.t. we can sunply write the random variable Cj ; as

Cij=>_ Si(x)L(Hi(x),§) = > nf(z)Si(2)L(Hi(x),5) = > CF

zeX € [u] T€[u]

where 1(H;(x),j) is a random variable, which is 1 if H;(z) = j and 0 otherwise. Then for any
q € [u] and any i € [t], we can write each f;(q) as

A 1

J:E[u ze[u] TH#q



because

Si(@)Ci,y () = Sila) Z Clig = Sild 9T Z Si(@)Ci ()
z€[y] z€[u],x#q
= Si(@)nf(q)Si(9)1(Hi(q) Z Si@)CF ()
z€|u],x#£q
+ D S0)Cn
z€|u],x#£q

Lemma 6. For any q € [u] and any i € [t], if S; is randomly choosen from a pairwise independent
hash function family, and H; is choosen independently of S;, then the mean of fi(q) is

Proof. We first show that

E [Si(q)C?”Hi(q)] =0 Forall z € [u],z #q. (2)

1y

E [Si(0)Cim, () = E [Si(@)nf(2)Si(2)1(H;(w), Hi(q))]
= nf(z)E [Si(q)Si(z)1(H;(z), Hi(q))]
= nf(z)E [Si(q)Si(z)] E [L(H;(z), Hi(q))] S; and H; are independent
= nf(z)E [Si(q)] E [Si(z)] E [L(H;(x), Hi(q))] S; is pairwise independent
=0 E [Sl(ZE)] =0
Then
E[fz(Q)] = Z Si( CfH by Equation 1
xe[u] T#q
— fla)+ % S E[Si(0)C)
z€ul,x#q
= f(q) by Equation 2

Lemma 6 shows each f;(¢) is an unbiased approximations of f(q).

Lemma 7. For any q € [u] and any i € [t], if S and H are choosen independently, then the variance
of fi(q) is
Vifila)] < - F3

where F2 = > eyl f(x)%



Proof. We first show that, for all z,y € [u],z,y # ¢,z # vy,

cov [Si(Q)CfH (@)’ Si(q)CgHi(Q)]
= E [ Si(q)CF (@) ~ E[Si(¢)C g (q)D (SZ(Q)CEJ,Hi

=E [ ~(q)C’§{Hi(q)) by Equation 2
= E [(nf(2)Si(z)1(H;(x), Hi(q))) (nf (v)Si(v)L(Hi(y), Hi(q)))]
= n?f(2)f(y) E[Si(2)Si(y) E [L(Hi(x), Hi(q))1(Hi(y), Hi(q))] S; and H; are indep.
= 2 () ) B [S:()] B Si(y)] B [1(Hi(x), Hila))1(Hi(y), (o)) S, is pairwise indep.
0
Thus
VIE@I = V| f@+ Y S
z€[u],z#q
n2 N Z Si(Q)Cin(q)
z€(u],x#£q
— 5 X V[sCiuy)

z€[u],x7£q

DS

z€lu],x#£q yElul,y#q,y#

> V8]

1

n2

z€[u],x#q

S%Z[

z€lu],x#q
— L}
Lemma 8. For any q € [u],i € [t], if k =
Proof.
Pr [ fila) = f(q)‘ > a} = Pr [ fila)
< V[fi2(Q)]
5

E:
E:

P i

cov [S,- (DC h, ()0 Si(@)

)Ch, )]

—F@»s%@

- Elfi(0)]] >

= ke?

F2 ;
%e27 then |fi(q) —

:

Cin, (qJ

O]

f(q)] < e with probability at least 1 — .

by the Chebyshev’s inequality



. P2 F2
Setting % =9, or k = 5%, we have

O]

Confidence boosting trick: if you have a randomized algorithm with constant failure probability,
then you can achieve an arbitrarily small failure probability § by repeating O(log %) versions of the
algorithm in parallel, and choosing the best result.

Lemma 9 (Hoeffding’s Inequality for Binomial Tail Bound). For the binomial distribution B(n,p),

its CDF is bounded by
k 2
F(k;n,p) < exp <—2n < - > )
n
F2

Theorem 10. If k = ;% and t = 8log%, then the output of Algorithm 3, fcg s an fs with
probability at least 1 — .

F3
g

Proof. Using Lemma 8, setting k = give us

Pr [|fit0) - f@)] 2 €] < §

If the median of fi(¢) has error more than &, then there must be at least t/ 2 of fi(q) with error
more than €. Let D; be the random variable equal to the number of failed f;(q) for i € [t], i.e.

fila) = f(a)] = &.
Pr||fos(a) — f(@)| = ] = x|

median(fi(q)) — /(q)] > eps| < Pr(D; > 1/2)

Since S; and H; are choosen independently, so fz(q) are also independent. Thus D; is a binomial
random variable with ¢ trials and probability of success p < %. By the Hoeffding’s inequality, we

have
1 2 t
Pr[D; > 1/2] < exp (—% (2 —p) ) < exp (—8>

Setting exp(—t/8) = 4, or t = 8log , we have

|

fes(a) - f(q)’ > 6} < Pr[Dy > t/2] < exp(—t/8) =4

Question 2. Why median not mean?

4 Count-Min Sketch

By Cormode and Muthukrishnan [2005], a hashing based sketching, an extension to Bloom Filter.
Recall Algorithm 4, Bloom Filter.
Where H := {Hj,..., H:} is a set of hash functions randomly choosen independent of the data.
For a query ¢, first calculate all fi(q) := %Ci, Hi(q)» then return the minimum of them

R 1 .
fems(q) = - r@glﬁ]l fi(q)

7



Algorithm 4: Bloom-Filter(X, H)

1 C« 0F H « (H;: [u] — (k)i
2 forall x € X do

3 forall i in [t| do

4 Cz,Hz(x) !

5 return C, H

Algorithm 5: Count-Min(X, ¢, k)

1 C <+ 0% H « (H;: [u] — [K])i_,
2 forall z € X do

3 forall i in [t] do

4

5

Cimye) ¢ Cimyz) +1
return C, H

Lemma 11. For any q € [ul,i € [t],

fa) < fila)-
If H; is drawn from a pairwise independent hash family, then

A~

Elfi(q) — f(9)] <

=

If k= é, then
Pr(fi(q) — f(q) > ] <6

Proof. The lower bound is obvious. For the upper bound, we first define random functions 1(a, b)
be 1 if a = b, and 0 otherwise. Then we have

Fila) = Com =~ S nf@UH @), Hi@) = fa) + Y f@)UH(), Hila)
x€u] z€[ul,x#q
And then
Elfi(e) =f(g)+ > f(2)E[L(Hi(z), Hi(q))]
z€[u],x#q
=f(q) + Z f(:z:)% < flq) + % H; is pairwise indep.
r€lu],x#q

Use the Markov’s inequality, we get



We can again use the confidence boosting technique to get a better space bound. By using
more hash fuanctions and counters, we can reduce the dependence of the space bound on the
inverse failure probability from linear to logarithm.

Theorem 12. Consider Algorithm 5, if t = lg%,k = %, then for any q € [u], foms(q) =

min;ey fz(q) is a fg(q) with probability at least 1 — 0.
Proof. By setting k = % in Lemma 11, we have the failure probability of one hash function

~

Pr(fi(q) — f(q) > €] <

N

Since t hash functions are choosen independently, the failure probability of all hash functions is

Prmin f;(q) — f(q) > €] = PrlVi € [t](fi(q) — f(q) = &)] = [[ Prlfi(a) — f(g) = ] < 1/2'

et ielt]
Setting the failure probability 1/2! = §, or t = Ig %, we finish the proof. O
5 Summary
Sketch Space Technique Deterministic
Misra-Gries O(1/e) Counter Yes
2
Count Sketch O (5722 log %) Hashing No
Count-Min Sketch O (l log %) Hashing No

Table 1: Studied Sketches to obtain f- (with probability at least 1 — ¢ if aplicable).

Compare the studied sketches Note: It seems like the Count-Min sketch is better than the
Count sketch in the error-space tradeoff, but the bound is based on F22 which is usually much
smaller than 1. The Count sketch is also more versatile than Count-Min sketch and works very
well in practice.

Definition 1 (biased approximation, unbiased approximation, under-estimated approximation,
over-estimated approximation). For a ground truth value f, a random variable f (the output of
any estimation method) is

e unbiased approximation if E[ f] =f;

e biased approximation if EJ f] # f;

e under-estimated approximation if E[ f] < f;

e over-estimated approximation if E[f] > f;
Question 3. Which approximations are unbiased?
Question 4. Does unbiased approximation always better than biased approximation?

Answer. It depends. Most of the time you will see “unbiased” as a requirement of a problem or a
character of a solution. If it is required, you are ristricted in the unbiased solution space. A biased
solution in this case is unvalid, not just not good enough. To compare which one is better, you
need some numerical measurments, in terms of error and failure rate. ]



Question 5. Can Count/Count-Min sketch solve heavy hitters? What is the query time? In-
vertable hasing? Min heap?

Answer. We can use a min heap. Whenever we see a item z, we update the sketch, estimate the
frequency and check if the estimate is greater enough. If yes, we update the heap to include s. The
computational cost to update the min heap is O(log k), therefore the total update cost is O(nlog k)
in the worst case (when we always update the heap). O

Question 6. What is the failure probability of Count/Count-Min sketch actually is? For one ¢ or
for all g € [u]?

Question 7. What about weighted data? Real value weights? Negative weights?

5.1 Vector streaming data

All three sketches above have extensions for vector data.

6 Conclusion
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