
Chapter 2

Balls and Bins

2.1 Balls ’n’ Bins – What is it?

Let’s start with a game that will help us with hashing, our first data structure. We introduce

the “balls and bins” game, in which we throw b balls equiprobably and independently into

n bins. (Often, b = n.)

Applications. We can gain insight into hashing by studying the balls and bins game be-

cause hashing is modelled by randomly “throwing” data into hash table locations. Another

application of balls and bins is in load-balancing, where bins can be thought of as servers,

and balls as clients.

Figure 2.1: Balls and bins.

Questions to ask about this game. A number of interesting questions can be raised

by playing this “balls and bins” game. What is the:
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• expected number of balls in a bin

• expected number of balls in the fullest bin

• expected number of balls that need to be thrown before getting a collision (a bin with

more than one ball)

• expected number of empty bins

• expected number of bins with a collision

• expected number of balls needed to fill all bins.

• and so on. . .

What happens when we replace “expected number” above with “with high probability’?’

In order to answer these questions, we need to review basic definitions and theorems of

probability.

2.2 Review of Basic Probability

2.2.1 Sample Spaces and Events

Definition 1 (Probability sample space (S, P )). Let S be a set of outcomes, which is

finite or countably infinite

S = {s1, s2, . . . } .

Let probability function

P : S → [0, 1] ,

where
∑

P (si) = 1 .

Definition 2. An event is a subset of outcomes from the sample space (S,P ).

Probability is beautiful, but unintuitive. Here’s a four-step process for solving many prob-

ability questions.

• Step 1: find the sample space

• Step 2: define events of interest.
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• Step 3: determine outcome probabilities.

• Step 4: determine event probabilities.

2.2.2 Random Variables and Expectation

Definition 3. A random variable is a function defined as

f : S → "+ .

(Actually " does not really need to be non-negative, but usually it is)

Note. A random variable isn’t a variable. It’s a function.

Definition 4. Expected value E[f ] of random variable f

E[f ] =
∑

p(si)f(si) .

Theorem 5. Linearity of expectation

E[f + g] = E[f ] + E[g] .

Linear of expectation is a beautiful thing!

Example 1. We have n letters and n envelopes. Each letter has its envelope. We put

letters randomly in envelopes. What is expected number of letters in the correct envelope?

Example 2. I flip a coin until I get tails. If I get i heads, I get 2i dollars. What’s the

expect number of dollars that I earn?

2.2.3 Conditional Probability and Independence1

Very roughly, this section is how to think about Pr(A∩B). (This idea helps me, but I don’t

know if it will help anyone else.)

Definition 6 (Conditional probability). The notation Pr(A|B) denotes the probability

of event A happening, given that event B happens. Formally,

Pr(A|B) =
Pr(A ∩B)

Pr(B)
.

If Pr(B) = 0, then the conditional probability Pr(A|B) is undefined.
1Some of this material is from Eric Lehman et al’s notes on the mathematics of computer science at MIT.
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Definition 7 (Independence). Two events A and B are independent if and only if:

Pr(A ∩B) = Pr(A) Pr(B).

Here is another way to think about independence:

Definition 8 (Independence, alternative definition). Two events A and B are inde-

pendent if and only if Pr(A|B) = Pr(A) or Pr(B) = 0.

Intuition about independence. Let’s develop some intuition about independence.

Question. Suppose that we have two disjoint events; see Figure 2.2.3. Are these events

independent?

A B

Figure 2.2: Illustration of two disjoint events.

Answer. No. Let’s see why. We know that

Pr(A ∩B) = 0

because the events are disjoint. On the other hand,

Pr(A) Pr(B) > 0

except in the degenerate case where one of the events has zero probability. Hence, disjoint-

ness and independence are very different concepts.

Figure 2.2.3 gives an intuitive picture of what independence means.
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Figure 2.3: Illustration of two independent events.

2.2.4 Mutual Independence and Pairwise Independence

Definition 9. Events E1, . . . , En are mutually independent if and only if for every

subset of the events, the probability of the intersection is the product of the probabilities of

the individual events. In other words, all of the following equations must hold:

Pr(Ei ∩ Ej) = Pr(Ei) Pr(Ej) f́or all distinct i, j

Pr(Ei ∩ Ej ∩ Ek) = Pr(Ei) Pr(Ej) Pr(Ek) for all distinct i, j, k

Pr(Ei ∩ Ej ∩ Ek ∩E!) = Pr(Ei) Pr(Ej) Pr(Ek) Pr(E!) for all distinct i, j, k, !

Pr(E1 ∩ . . . ∩En) = Pr(E1) . . .Pr(En) for all distinct i, . . . , n

Example 3. Suppose that we flip three fair, mutually independent coins. Define the

following events:

• A1 is the event that coin 1 matches coin 2.

• A2 is the event that coin 2 matches coin 3.

• A3 is the event that coin 3 matches coin 1.

Are A1, A2, A3 mutually independent?
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Answer. No. But they are pairwise independent .

Definition 10. Events E1, . . . , En are pairwise independent if and only if for every two

events, the probability of the intersection is the product of the probabilities of the individual

events. In other words:

Pr(Ei ∩ Ej) = Pr(Ei) Pr(Ej) for all distinct i, j

2.2.5 Independence of Random Variables

The notion of independence carries over from events to random variables.

Definition 11. Random variables X1 and X2 are independent if

Pr(X1 = a1 ∩X2 = a2) = Pr(X1 = a1)Pr(X2 = a2)

for all a1 in the codomain (image) of X1 and a2 in the codomain (range) of X2 .

The same notions of pairwise and mutual independence also carry over from events to

random variables.

2.2.6 Inclusion/Exclusion

This section explains how to think about Pr(A ∪B).

Theorem 12 (Inclusion-Exclusion). Given two events A1 and A2,

Pr(A1 ∪A2) = Pr(A1) + Pr(A2)− Pr(A1 ∩A2).

We can now generalize to three events.

Theorem 13 (Inclusion-Exclusion). Given three events A1, A2, and A3,

Pr(A1 ∪A2 ∪A3) = Pr(A1) + Pr(A2) + Pr(A3)

− Pr(A1 ∩A2)− Pr(A1 ∩A3)− Pr(A2 ∩A3)

+ Pr(A1 ∩A2 ∩A3).

We can similarly generalize to any number n of events, alternating plusses and minuses.

Inclusion exclusion is illustrated by Figure 2.2.6.

A correllary of the previous theorems is
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Need a figure explaining how inclusion-exclusion works.

Figure 2.4: Illustration of inclusion exclusion.

Theorem 14 (Union bound). Given two events A1 and A2,

Pr(A1 ∪A2) = Pr(A1) + Pr(A2)− Pr(A1 ∩A2)

≤ Pr(A1) + Pr(A2).

Given n events A1, A2, . . . , An,

Pr(A1 ∪A2 ∪ . . . ∪An) ≤ Pr(A1) + Pr(A2) + · · ·+ Pr(An).

2.3 Answering the Questions

Now we start answering the questions that were raised. While we are answering the ques-

tions we will come across Death Bed Formulae which will be boxed separately throughout

this document.

2.3.1 Expected Numbers of Balls in a Bin

Question 1: What is the expected number of balls in bin 1?

Theorem 15. The expected number of balls in a bin is 1.

First, define random variable

xi =

{

1 if ball i lands in bin 1;

0 if ball i lands in another bin.

Define X, the number of balls in bin 1, as

X = x1 + x2 + · · ·+ xN .

The expected value of any ball i landing in bin 1 is

E[xi] = 1 ·
1

n
+ 0 ·

(

1−
1

n

)

=
1

n
.

By linearity of expectation, the expected number of balls in bin 1, E[X], is

E[X] = E[x1] +E[x2] + · · ·+ E[xN ]

= n ·E[x1] = 1.
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2.3.2 Balls in the Fullest Bin

Question 2: What is the number of balls in the fullest bin with high probability, given

that there are a total of n balls and n bins?

Before we answer this question we define the term “with high probability.”

Definition 16. Let En be an event on problem size n. We say that En occurs with high

probability if Pr(En) ≥ 1− 1
nc , for some constant c.

Typically, En will be parametrized by some constant d. For example, En might be the event

that a bin has Θ(log n) balls, and the Θ hides a multiplicative constant. In this case, we can

say even more strongly that for every c, there is a d so that Pr(E) ≥ 1− 1
nc .

This stronger definition is what we’ll mean by “with high probability” unless otherwise noted.

Theorem 17. The fullest bin has O
(

logn
log logn

)

balls with high probability.

Proof: We start by giving the probability of the 1st bin having ! balls. That is,

Pr(bin 1 has ! balls) =

(

n

!

)(

1

n

)!(

1−
1

n

)n−!

.

Now we give the probability that bin 1 has more than ! balls. And that is,

Pr(bin 1 has ≥ ! balls) ≤
(

n

!

)(

1

n

)!

.

DON’T FORGET:
( y
x

)x ≤
(y
x

)

≤
(ey
x

)x
.

From the above fact we get,

Pr(bin 1 has ≥ ! balls) ≤
(

n

!

)(

1

n

)!

≤
(en

!n

)!

=
(e

!

)!
.

DON’T FORGET: P (A∪B) = P (A)+P (B)−P (A∩B) ≤ P (A)+P (B).
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Let’s say that ! = c log n. Then we get,

Pr(any bin has ≥ c log n balls) ≤ n
(

e
c logn

)c logn

≤ n
(

1
2

)c logn

≤ n · n−c

= n1−c,

which is polynomially small. Since this approximation is so loose, we can do better.

Now let us say the ! = c logn
log logn . Then:

Pr(any bin has ≥ c
log n

log log n
balls) ≤ n

(

e log log n

c log n

)

c log n
log log n

≤ n2
log

(

e log log n
c log n

)

c log n
log log n

≤ n2

(

c log n
log logn

)

(log e+log log logn−log logn−log c)

≤ n

(

1

2

)

(

c log n
log logn

)

(log logn−O(log log logn))

≤ n

(

1

2

)c logn−o(c logn)

.

For sufficiently large c and n, we obtain

Pr(any bin has ≥ c
log n

log log n
balls) ≤ n

(

1

2

)(c−1) logn

= n2−c,

which is also polynomially small.

In fact, the previous bound is tight. We will not attempt to prove the lower bound right

away.

Theorem 18. The number of balls in the fullest bin is Ω
(

logn
log logn

)

whp.

If we combine Theorems 17 and 18, we know that:

Theorem 19. The number of balls in the fullest bin is Θ( logn
log logn) whp.

2.3.3 Balls Needed to Fill all n Bins

Question 3: What is the number of balls needed to fill all n bins w.h.p.?

Theorem 20. The number of balls needed to fill all the bins is Θ(n log n) with high proba-

bility.
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Proof: A naive lower bound for this problem is Ω(n).

We find the upper bound by finding the probability of bin 1 being empty after ! balls have

been thrown,

Pr(bin 1 is empty after ! balls) =

(

1−
1

n

)!

.

DON’T FORGET: (1 − 1
n)

n ≤ 1
e .

Pr(bin 1 is empty after ! balls) =

(

1−
1

n

)n !
n

≤
(

1

e

)
!
n

.

Let ! = cn lnn. Plugging in this value of ! in the above inequality we get

Pr(bin 1 is empty after ! balls) ≤
(

1

e

)c lnn

= n−c.

Therefore,

Pr(any bin is empty) ≤ n · n−c = n1−c.

So we see that the number of balls required to fill all the bins w.h.p. is O(n log n). In fact,

the number of balls required to fill all bins w.h.p is also Ω(n log n).

Question 4: What is the expected number of balls required to fill all the bins?2

Theorem 21. The expected number of balls required to fill all the bins is nhn, where hn ≈
lnn is the nth harmonic number.3

h1 = 1, h2 = 1+ 1
2 , h3 = 1+ 1

2 +
1
3 , . . . ....hn = 1+ 1

2 +
1
3 +

1
4 . . . ...+

1
n−1 +

1
n .

Proof: Divide the execution into phases n, n− 1, n− 2, . . . , 1 , where in phase i there are

i free bins. In phase i the probability that a ball falls in an empty bin is

Pr(a ball falls in an empty bin) =
i

n
.

2This question is also known as the Coupon Collector’s problem
3Figure 2.5 illustrates why the above approximation is true
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Let Xi be a random variable measuring the number of balls thrown in phase i.

Then

E[Xi] =
n

i
.

Let the random variable X be the number of balls needed to fill all bins, i.e,

X = X1 +X2 +X3 + · · · ...+Xn.

By linearity of expectation

E[X] = E[X1] + E[X2] + · · ·+ E[Xn]

= n · (1 + 1
2 + 1

3 + · · ·+ 1
n)

≈ n · lnn.

Figure 2.5: The curve of function 1/n. The harmontic number hn ≈ lnn is the integral of

this curve.

2.3.4 Number of Pairwise Collisions

Question 5: What is the expected number of pairwise collisions?

Theorem 22. Suppose that we have n balls and cn2 bins. Then the expected number of

pairwise collisions is 1
2c .
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Proof: Let there be a random variable Xij such that,

Xij =

{

1 if i and j collide;

0 otherwise.

The total number of paiwise collisions is the sum of all the random variables for all 1 ≤ i <

j ≤ n.

X =
∑

1≤i<j≤n

Xij .

The expectation of Xij is given by,

E[Xij ] = 1 ·
1

cn2
+ 0 ·

(

1−
1

cn2

)

(2.1)

=
1

cn2
.

Thus, by linearity of expectation,

E[X] =

(

n(n− 1)

2
·

1

cn2

)

≈
(

1

2c

)

.

We’ll deal with other of the questions later. Some of the questions are more difficult because

we do not have independence.
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