L earned Indexes

CS 6530, Fall 2024
Yuvaraj Chesetti

What is an Index?

Task: Retrieve V, given K

Data K,V

Sorted

What is an Index?

Task: Retrieve V, given K

K Binary Search?

Data K,V

Sorted

Indexes

Task: Retrieve V, given K

K Binary Search?

B Too Slow - log,(N) I/Os

Data K,V

Sorted

Indexes

Task: Retrieve V, given K Use an Index!

[:::} A //lmW

=

Data

Sorted

Indexes

Task: Retrieve V, given K B+ Tree,
Be Tree,

LSM Tree,

=

Data

Sorted

Indexes

Task: Retrieve V, given K B+ Tree,
Be Tree,

LSM Tree,
Machine Learning?

K K,V
B / Index

=

Data

Sorted

Learn Data Distribution

Task: Retrieve V, given K

Q: If the data followed a pattern, do you
need a index?

Sorted

Learn Data Distribution

Task: Retrieve V, given K

Q: If the data followed a pattern, do you
need a index?

Data 0,2,4,6 8,10,12, 14 16, 18, 20, 22 24, 26, 28, 30 32, 34, 36, 38

Sorted

Learn Data Distribution

Task: Retrieve V, given K

Q: If the data followed a pattern, do you
need a index?

D No, O(1) Disk Access

Data 0,2,4,6 8,10,12, 14 16, 18, 20, 22 24, 26, 28, 30 32, 34, 36, 38

Sorted

Indexes

Task: Retrieve V, given K Build ML Models
that learn the

pattern!

=

Data K,V

Sorted

(a) B-Tree Index (b) Learned Index

Key Key
¥ ¢
Model
BTree (e.g., NN)
pos pos

pos -0 pos + pagezise pos - min_err pos + max_er

What to Learn?

Cumulative Distributive Function

A bag of N items

(Universe U)

Cumulative Distributive Function

?

A bag of N items

(Universe U) Pick a random
item

Cumulative Distributive Function

?
A bag of N items
(Universe U) Pick a random
item

What is the probability that
the item picked is smaller
than ‘X’ ?

Cumulative Distributive Function

A bag of N items

(Universe U)

Pick a random
item

What is the probability that
the item picked is smaller
than ‘X’ ?

>=X

P(“?’<X)=LIN

Cumulative Distributive Function

? . N
A bag of N items
(Universe U) Pick a random <X >=X
item “— L X

What is the probability that
the item picked is smaller P(“?’ < X) = LIN
than ‘X’ ?

This is the position of ‘X' if
items in the bag were laid out
sorted!

Cumulative Distributive Function

\ e P(*7<X)=L/Nis called the
Cumulative Distribution Function

e Monotonic increasing function

N
L SN, e Learn the distribution = Learn the
l C.D.F
) |
—9 1
= ; e All Indexes learn the C.D.F
| (Even B+ Trees!)
:
0) I
&

c\/

ke_t/

Perfect Index (C.D.F)

How to Learn?

Top Down - Recursive Model Index (RMlI)

Stage3 Stage2 Stagel

l Key

Model 1.1
Model 2.1 Model 2.2 Model 2.3

Model 3.1

Model 3.2

Model 3.3

Model 3.4

Position

\/

Start with a spec,
Search for a optimal layout

Models:

e Linearf(x)

e Non Linear f(x)
e Neural Networks
e B+ Trees

Bottom Up - Piecewise Linear Regression

position

BNOWALOONDO

0

20

40

60

key

80

100

120

140

Stream sorted data
Cut Line Segments

Examples:
RadixSpline, PGM

| 2 |11|12|15|18I23|24|29l31|34'36'44'47'48'55|59|60|71|73|74|76'88|95|99|102|115|122|123|128|140|145|146I

1

n

Fig Source: https://pgm.di.unipi.it/slides-pgm-index-vidb.pdf

What about error?

0]

|
I
I
|
|
I
I
I
|
I
]
ke_t/ x
Perfect Index (C.D.F)

\
N /
posG) + eff------------ |
3 :
2 I
O / :)
0 x b

Leamed Index (P.L.R of C.D.F.)

All Indexes have error (even B+ Trees)

e All indexes have error!
e B-Tree has an error of page-size

e Error can be bounded (at cost of Model size)

(a) B-Tree Index
Key

Y

BTree
pos

pos -0 pos + pagezise

(b) Learned Index
Key

¢

Model
(e.g., NN)

pos \,

[T

pos - min_err pos + max_er

Kraska, Tim, et al. "The case for learned index structures."

SIGMOD 2018.

i B
))
‘id
Check for
updates

Research 6: Storage & Indexing

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

The Case for Learned Index Structures

Tim Kraska* Alex Beutel Ed H. Chi Jeffrey Dean Neoklis Polyzotis
MIT Google, Inc. Google, Inc. Google, Inc. Google, Inc.
kraska@mit.edu abeutel@google.com edchi@googlecom jeff@google.com npoly@google.com
ABSTRACT

Indexes are models: a B-Tree-Index can be seen as a model to
map a key to the position of a record within a sorted array, a
Hash-Index as a model to map a key to a position of a record
within an unsorted array, and a BitMap-Index as a model to in-
dicate if a data record exists or not. In this exploratory research
paper, we start from this premise and posit that all existing
index structures can be replaced with other types of models, in-
cluding deep-learning models, which we term learned indexes.
We theoretically analyze under which conditions learned in-
dexes outperform traditional index structures and describe the

main challanaae in dacianing learnad indav cfrichirae MDar

a set of continuous integer keys (e.g., the keys 1 to 100M), one
would not use a conventional B-Tree index over the keys since
the key itself can be used as an offset, making it an O(1) rather
than O(log n) operation to look-up any key or the beginning
of a range of keys. Similarly, the index memory size would be
reduced from O(n) to O(1). Maybe surprisingly, similar opti-
mizations are possible for other data patterns. In other words,
knowing the exact data distribution enables highly optimizing
almost any index structure.

Of course, in most real-world use cases the data do not
perfectly follow a known pattern and the engineering effort
to build specialized solutions for every use case is usually too

What about updates?

LSM Trees

® Daj, Yifan, et al. "From {WiscKey} to Bourbon: A Learned Index for {Log-Structured} Merge Trees." 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). 2020.

® Abu-Libdeh, Hussam, et al. "Learned indexes for a google-scale disk-based database." arXiv preprint
arXiv:2012.12501 (2020).

L1
L2 . | 20-40 |
L3 | 20-30 30-40 |

LSM Trees

® Daj, Yifan, et al. "From {WiscKey} to Bourbon: A Learned Index for {Log-Structured} Merge Trees." 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). 2020.

® Abu-Libdeh, Hussam, et al. "Learned indexes for a google-scale disk-based database." arXiv preprint
arXiv:2012.12501 (2020).

L1 L

L2

L3

N
e
W
S
w
o
iiN
S

Updateability of Learned Indexes

pos() + e t----------- /

Learned Index (P.L.R of C.D.F.)

ndex

<\

0,2,4,6 8,10, 12, 14 16, 18, 20, 22 24, 26, 28, 30

Sorted, Clustered List on Disk

Updateability of Learned Indexes

Where do we insert? v —
The model has learnt posGd + e --—------— - .
distribution of sorted 33 !
packed datal! i / 5
v 0 : -
0 - * 0
Leamed Index (P.L.R of C.D.F.)
Need to shift all
items across
0,2,4,6 8,10, 12, 14 16, 18, 20, 22 24, 26, 28, 30

Sorted, Clustered List on Disk

Updateability of Learned Indexes

Should we retrain? v -l
We can tolerate error, posGd + e f------------ |
but how much? 3 !
7 B i / :)
0 ey x 0
Leamed Index (P.L.R of C.D.F.)
0,2,4,6 8,10, 12, 14 16, 18, 20, 22 24, 26, 28, 30

Sorted, Clustered List on Disk

Take ideas from the B+ Tree

e \Where do you insert?
o Leave gaps in nodes lKey

o Split and merge

o Split and merge o Model 11
: - R e &
e \When do you retrain? & Model 2.1 Model 2.2 Model 2.3
¥

— s
Model 3.1 Model 3.2 Model 3.3 Model 3.4

l Position

| 21 May 2020

ALEX: An Updatable Adaptive Learned Index

Jialin Ding" Umar Farooq Minhasf Jia Yu®
Chi Wangf JaeyoungDoi YinanLii Hantian Zhang™ Badrish Chandramoulif

Johannes Gehrke: Donald Kossmanni David Lometi Tim Kraska'

TMassachusetts Institute of Technology *Microsoft Research ®Arizona State University
*Georgia Institute of Technology

ABSTRACT

Recent work on “learned indexes” has changed the way we
look at the decades-old field of DBMS indexing. The key idea
is that indexes can be thought of as “models” that predict the

position of a key in a dataset. Indexes can, thus, be learned.

The original work by Kraska et al. shows that a learned index
beats a B+Tree by a factor of up to three in search time and
by an order of magnitude in memory footprint. However, it
is limited to static, read-only workloads.

LS 1 1. 1 11 1 AY Tmixr

index for dynamic workloads that effectively combines the core
insights from the Learned Index with proven storage & index-
ing techniques to deliver great performance in both time and
space? Our answer is a new in-memory index structure called
ALEX, a fully dynamic data structure that simultaneously pro-
vides efficient support for point lookups, short range queries,
inserts, updates, deletes, and bulk loading. This mix of opera-
tions is commonplace in online transaction processing (OLTP)
workloads [6, 8, 32] and is also supported by B+Trees [29].

Tmnlamenting writec writh hich narfarmance ranmirec a

My Takeaway: Combine a B+ Tree structure
with learned indexes, result: ALEX

| 21 May 2020

ALEX: An Updatable Adaptive Learned Index

Jialin Ding" Umar Farooq Minhasf Jia Yu®
Chi Wangf JaeyoungDoi YinanLii Hantian Zhang™ Badrish Chandramoulif

Johannes Gehrke: Donald Kossmanni David Lometi Tim Kraska'

TMassachusetts Institute of Technology *Microsoft Research ®Arizona State University
*Georgia Institute of Technology

ABSTRACT

Recent work on “learned indexes” has changed the way we
look at the decades-old field of DBMS indexing. The key idea
is that indexes can be thought of as “models” that predict the

position of a key in a dataset. Indexes can, thus, be learned.

The original work by Kraska et al. shows that a learned index
beats a B+Tree by a factor of up to three in search time and
by an order of magnitude in memory footprint. However, it
is limited to static, read-only workloads.

LS 1 1. 1 11 1 AY Tmixr

index for dynamic workloads that effectively combines the core
insights from the Learned Index with proven storage & index-
ing techniques to deliver great performance in both time and
space? Our answer is a new in-memory index structure called
ALEX, a fully dynamic data structure that simultaneously pro-
vides efficient support for point lookups, short range queries,
inserts, updates, deletes, and bulk loading. This mix of opera-
tions is commonplace in online transaction processing (OLTP)
workloads [6, 8, 32] and is also supported by B+Trees [29].

Tmnlamenting writec writh hich narfarmance ranmirec a

ALEX design overview

Structure
* Dynamic tree structure

* Each node contains a linear model
* internal nodes = models select the child node
» data nodes = models predict the position of a key

Core operations

* Lookup
* Use RMI to predict location of key in a data node
* Do local search to correct for prediction error

* Insert
* Do alookup to find the insert position
* Insert the new key/value (might require shifting)

Current design constraints
a) Inmemory

b) Numeric data types
c) Single threaded

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Legend

Internal
Node

Data
Node

Il Key
[] Gap

v]
Root [(M]
Node ;I;IIL
Adaptive
[RMI

exponential
search

Slide from CS 6530, Fall 2022 -

4. Adaptive Structure

(o] (]

O]
EEEN

* Flexible tree structure

 Split nodes sideways Qﬁ@ @ ®:> New iner
* Split nodes downwards ezl @ ‘

AL

Split Data Node Left Half Right Half
* Expand nOdeS (@) New Data Nodes
* Merge nodes, contract nodes
. ; . : — —
Key |dga. gll decisions are made Y o
to maximize performance
° i — —
Use cost moqel of query runtime " -
* No hand-tuning — 7
* Robust to data and workload shifts DataNode Expanded Data Node

ALEX - Optimizations

e Gapped Array
e Model Based Insertion
e Exponential Search

Gapped Array

B+ Tree node
Dense, sorted

Gapped Array

Inserts more efficient
(less items to shift)

Model Based Insertion

e \Where do you leave the gaps?
e Start with an empty array, insert according to model
e Model has errors, so gaps will naturally occur

Gapped Array

Inserts more efficient
(less items to shift)

Model Based Insertion

e \Where do you leave the gaps?
e Start with an empty array, insert according to model
e Model has errors, so gaps will naturally occur

Gapped Array

Inserts more efficient
(less items to shift)

Model Based Insertion

e \Where do you leave the gaps?
e Start with an empty array, insert according to model
e Model has errors, so gaps will naturally occur

Gapped Array

Inserts more efficient
(less items to shift)

Shift other items to
nearest gap

Model Based Insertion

e \Where do you leave the gaps?
e Start with an empty array, insert according to model
e Model has errors, so gaps will naturally occur

I - Gapped Array
Inserts more efficient

(less items to shift)

Shift other items to
nearest gap

Lookups in ALEX

e Use the RMI to reach the correct Gapped Array
e Model based insertion - items will always be at or right of predicted position
e Start search from predicted position

Start search for Y from model
predicted position

Search Algorithm

e Search - linear, binary or exponential?

e Exponential -
o Search in windows of 2, 4, 8, 16... 2*x
o If you overshoot, search in the second half with same window

Start search for Y from model
predicted position

3. Exponential Search

—— Binary (bound 1K) —¥— Exponential

Search Method Comparison

102 -

Search time (ns)

10! 102 103
Error size

Model errors are low, so exponential search is faster than binary search
Slide from CS 6530, Fall 2022 .,

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Throughput (million ops/sec)

B ALEX I Learned Index

(a) Throughput: Read-Only

10 A

5 4

0 -
Longitudes Longlat Lognormal YCSB
Dataset

~4x faster than B+ Tree
~2x faster than Learned Index

=
o
Q
L
vy)
oo
—
o
M
M

Throughput (million ops/sec)

BN B+ Tree B ART

(c) Throughput: Write-Heavy

Longitudes Longlat Lognormal YCSB
Dataset

~2-3x faster than B+ Tree

Index size (bytes)

Bl ALEX I Learned Index Bl Model B+ Tree Bl B+ Tree BN ART

(f) Index Size: Read-Only

108

106 .

104 .
Longitudes Longlat Lognormal YCSB

Dataset

~3 orders of magnitude less space for index

Index size (bytes)

(h) Index Size: Write-Heavy

Longitudes Longlat Lognormal YCSB
Dataset

68

Search on Sorted Data Benchmark

XS S M L XL

Up to 0.01% of data size Up to 0.1% of data size Up to 1% of data size ¥ Up to 10% of data size No limit

Index [Index Size

RS _ 203 ns 193 ns 184 ns
PGM 354 ns 303 ns 247 ns 228 ns 228 ns
ALEX 430 ns 355 ns 298 ns

RT 441 ns 396 ns 379 ns

BinarySearch

FAST

Search on Sorted Data Benchmark

Plot:
Plot:
Plot:
Plot:
Plot:
Plot:
Plot:
Plot:

Index [Index Size

RMI

RS

PGM

ART

BTree

FAST

ALEX

BinarySearch

XS

Up to 0.01% of data size

14154004 ns

1250036 ns

3584017 ns

23 ns

0Ons

S

Up to 0.1% of data size

14254178 ns

1336533 ns

3584017 ns

179503 ns

174 ns

1984 ns

4580 ns

0Ons

M

Up to 1% of data size

9559940 ns

1472435 ns

5451576 ns

244217 ns

2138 ns

10003 ns

19918 ns

Ons

K

Up to 10% of data size

12571378 ns

1566636 ns

6390041 ns

697001 ns

57139 ns

10003 ns

940022 ns

Ons

XL

No limit

20855801 ns

2463623 ns

6390041 ns

697001 ns

57139 ns

10003 ns

5627242 ns

ons

Open Research Problems

Theoretical lower bounds
Large build times
Variable length keys

String keys

Compression

Concurrency

Specialized Hardware

Different Learned Indexes

e RMI

e PGM Index - Ferragina, Paolo, and Giorgio Vinciguerra. "The PGM-index: a
fully-dynamic compressed learned index with provable worst-case bounds."
Proceedings of the VLDB Endowment 13.8 (2020): 1162-1175.

e ALEX - Ding, Jialin, et al. "ALEX: an updatable adaptive learned index." Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data. 2020

e FITing Tree - Galakatos, Alex, et al. "Fiting-tree: A data-aware index structure."
Proceedings of the 2019 international conference on management of data. 2019.

e LIPP - Jiacheng Wu, Yong Zhang, Shimin Chen, Yu Chen, Jin Wang, Chunxiao Xing:
Updatable Learned Index with Precise Positions. Proc. VLDB Endow. 14(8): 1276-1288
(2021).

https://github.com/learnedsystems/RMI
https://pgm.di.unipi.it/
https://github.com/microsoft/ALEX
https://github.com/aysusayin/FITing-Tree
https://github.com/thu-west/LIPP
http://vldb.org/pvldb/vol14/p1276-wu.pdf

| earned Index Performance

e Benchmark
o SOSD - Marcus, Ryan, et al. "Benchmarking learned indexes.", NeurlPS Workshop on
Machine Learning for Systems
o Lan, Hai, et al. "Updatable Learned Indexes Meet Disk-Resident DBMS-From Evaluations
to Design Choices." Proceedings of the ACM on Management of Data 1.2 (2023): 1-22.
e Theoretical
o Ferragina, Paolo, Fabrizio Lillo, and Giorgio Vinciguerra. "Why are learned indexes so
effective?." International Conference on Machine Learning. PMLR, 2020.
o Sabek, Ibrahim, et al. "Can Learned Models Replace Hash Functions?." Proceedings of the
VLDB Endowment 16.3 (2022): 532-545.

https://github.com/learnedsystems/SOSD

Other

e Genomics
o Ho, Darryl, et al. "Lisa: Learned indexes for DNA sequence analysis." bioRxiv (2020).
o Kirsche, Melanie, Arun Das, and Michael C. Schatz. "Sapling: Accelerating suffix array queries with
learned data models." Bioinformatics 37.6 (2021): 744-749.
e Spatial Indexing
o Varun Pandey, Alexander van Renen, Andreas Kipf, Jialin Ding, Ibrahim Sabek, Alfons Kemper: The Case for Learned
Spatial Indexes. AIDB@VLDB 2020
e (Classical Algorithms
o Kiristo, Ani, et al. "The case for a learned sorting algorithm." Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 2020.
o Sabek, Ibrahim, and Tim Kraska. "The Case for Learned In-Memory Joins." arXiv preprint arXiv:2111.08824
(2021). (VLDB 2023)

https://dblp.org/pid/51/1618.html
https://dblp.org/pid/219/9679.html
https://dblp.org/pid/167/6469.html
https://dblp.org/pid/145/8597.html
https://dblp.org/pid/16/8981.html
https://dblp.org/pid/k/AlfonsKemper.html
https://dblp.org/db/conf/vldb/aidb2020.html#PandeyRKDSK20

Thanks!

Questions?

