
Atomicity, Locks,
Consistency & Project 1

August 22, CS 6530
Yuvaraj Chesetti

Multi-threaded programming

Multithreaded programming can be
unintuitive!

Intuition 1 - Operations are atomic by default

Single
Threaded

Multi
Threaded

Single
Threaded

Multi
Threaded

1000000

Random
(~ 500000)

What’s happening?

x = x + 1 is not really 1 instruction

CPU 1

X = 207

R1 = 0

CPU 2

R1 = 0

Memory
CPU 1 CPU 2

CPU 1

X = 207

R1 = 207

CPU 2

R1 = 0

Memory
CPU 1

ld x, r1

CPU 2

CPU 1

X = 207

R1 = 207

CPU 2

R1 = 207

Memory
CPU 1

ld x, r1

CPU 2

ld x, r1

CPU 1

X = 207

R1 = 208

CPU 2

R1 = 207

Memory
CPU 1

ld x, r1
add r1, r1, 1

CPU 2

ld x, r1

CPU 1

X = 207

R1 = 208

CPU 2

R1 = 208

Memory
CPU 1

ld x, r1
add r1, r1, 1

CPU 2

ld x, r1
add r1, r1, 1

CPU 1

X = 208

R1 = 208

CPU 2

R1 = 208

Memory
CPU 1

ld x, r1
add r1, r1, 1

st x,r1

CPU 2

ld x, r1
add r1, r1, 1

st x, r1

CPU 1

X = 208

R1 = 208

CPU 2

R1 = 208

Memory
CPU 1

ld x, r1
add r1, r1, 1

st x,r1

CPU 2

ld x, r1
add r1, r1, 1

st x, r1

What went wrong?

CPU 1

X = 208

R1 = 208

CPU 2

R1 = 208

Memory
CPU 1

ld x, r1
add r1, r1, 1

st x,r1

CPU 2

ld x, r1
add r1, r1, 1

st x, r1

What went wrong?

We expect
x = x + 1 to be executed as
one step by one thread

CPU 1

X = 208

R1 = 208

CPU 2

R1 = 208

Memory
CPU 1

ld x, r1
add r1, r1, 1

st x,r1

CPU 2

ld x, r1
add r1, r1, 1

st x, r1

What went wrong?

We expect
x = x + 1 to be Atomic!

Atomics in C

GNU builtin atomics

void __atomic_load (type *ptr, type *ret, int memorder)

void __atomic_store (type *ptr, type *val, int memorder)

type __atomic_add_fetch (type *ptr, type val, int memorder)

type __sync_lock_test_and_set (type *ptr, type value, ...)
Atomically set *ptr to value, return old value

void __sync_release (type *ptr)
Atomically set *ptr to 0

FULL LIST AT: https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html#index-_005f_005fatomic_005fload
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html

Single
Threaded

Multi
Threaded

Single
Threaded

Multi
Threaded

1000000

1000000

Level of Atomicity

● Are atomics enough?
● What about objects or Read-Modify-Writes?

mutateObject(*obj, f1, f2) {
atomic_store(obj->field_1, f1)
atomic_store(obj->field_2, f2)

}

Level of Atomicity

● Are atomics enough?
● What about objects or Read-Modify-Writes?

mutateObject(*obj, f1, f2) {
atomic_store(obj->field_1, f1)
atomic_store(obj->field_2, f2)

}

Thread 1 -> mutateObject(obj, x, x)
Thread 2 -> mutateObject(obj, y, y)

Level of Atomicity

● Are atomics enough?
● What about objects or Read-Modify-Writes?

mutateObject(*obj, f1, f2) {
atomic_store(obj->field_1, f1)
atomic_store(obj->field_2, f2)

}

Thread 1 -> mutateObject(obj, x, x)
Thread 2 -> mutateObject(obj, y, y)

assert(obj->field_1 == obj->field_2)
Can this assertion fail?

Level of Atomicity

t1 sets field_1 to x
t2 sets field_1 to y
t2 sets field_2 to y
t1 sets field_2 to x

Result:
{field_1 = y, field_2 = x}

Individual operations are atomic,
but the entire function is not!

Problem: Function is not atomic

Critical Section - Locks

● Locks - barriers that prevent multiple threads entering critical section

mutateObject(*obj, f1, f2) {
acquire(obj->lock)

// Critical Section Start

atomic_store(obj->field_1, f1)
atomic_store(obj->field_2, f2)

// Critical Section End
release(obj->lock)

}

Only 1 thread
should be in this
section

Database Row

T

Database Row

R

Acquire Lock?

T

Database Row

R

OK!

T

Database Row

RT

Read/Write
Row

Database Row

R

Acquire lock?

T T T T

Database Row

R

Acquire lock?

T T T T

Hold on, not yet!
Someone is holding the lock

Database Row

RT T T T

I’m done!
Release
lock

Database Row

T T T

The lock just got released!
I’ll let one of you acquire the lock

Database Row

T T T

The lock just got released!
I’ll let one of you acquire the lock

Prevents concurrent
modifications

ReaderWriter Lock

Q: If all the threads are only reading, is it ok to let them run concurrently?

YES!

● The ReaderWriter lock is an extension to a simple lock which
○ Allows concurrent access to readers
○ Exclusive access to writers

Database Row

R

Database Row

R

Acquire Read Lock?

R

Database Row

R

OK!

R

Database Row

RR

Read
Row

Database Row

R

Acquire read lock?

R R R R

Database Row

R

OK!

R R R R

Database Row

RR

Read

R R R

Database Row

RR R R R

Database Row

RR R R R W

Acquire Write
Lock?

Database Row

RR R R R W

Acquire Write
Lock

Hold on, not yet!
As soon as the readers are done

Database Row

RR

I’m done!
Release
read lock

R R R W

Acquire Write
Lock

Hold on, not yet!Hold on, not yet!
As soon as the readers are done

Database Row

R R R W

Acquire Write
Lock

Hold on, not yet!Hold on, not yet!
As soon as the readers are done

Release read lock

Database Row

W

Acquire Write
Lock

Hold on, not yet!Hold on, not yet!
As soon as the readers are done

Database Row

W

OK!

Database Row

W WR

Acquire write lock?Acquire read lock?

Hold on! Not yet..

Database Row

WR

Acquire write lock?Acquire read lock?

Hold on! Not yet..

Scheduling question: Who gets the lock now?

Database Row

RR R R R W

Acquire Write
Lock

Hold on, not yet!
As soon as the readers are done

R

Scheduling question:
Should R to be give a reader lock?

Implementing Locks

Lock API

● Simple Lock
○ Acquire
○ Release

● ReadWrite Lock
○ AcquireReadLock
○ ReleaseReadLock
○ AcquireWriteLock
○ ReleaseWriteLock

Implementing Locks

void acquire_lock(int *lock) {
 while(__sync_test_and_set(&lock, 1));
}

void release_lock(int *lock) {
 __sync_release(&lock);
}

type __sync_lock_test_and_set (type *ptr, type value, ...)

Atomically set *ptr to value, return old value

void __sync_release (type *ptr)

Atomically set *ptr to 0

Project 1
Implement Reader/Writer Locks!

Project 1
Demo

Readers vs Writers

Atomics and synchronization primitives are not cheap!

● For readers, synchronization is an overhead
○ If there were only readers, you would not need synchronization

● For writers, synchronization is unavoidable

Lock implementation should aim to

● add minimal overhead to readers
● without giving up on correctness

Memory Consistency Model

Intuition 2 - Operations are always performed
in order

More unintuitive behaviour

● Can the below code print (A=0,B=0) ?

A = 0, B = 0

T1 T2

A = 1 B = 1

Print B Print A

More unintuitive behaviour

● Can the below code print (A=0,B=0) ?

A = 0, B = 0

T1 T2

A = 1 B = 1

Print B Print A

T1 T2

Print B B = 1

A = 1 Print A

CPU/Compiler thinks its
ok to reorder
independent
statements!

Memory Consistency Models

● Memory Consistency Models - expectations on memory behaviour
● Determines what reorderings are allowed
● Stricter consistency models at cost of performance
● Sequential Consistency

○ Interleavings must follow a order that could have been done on a single thread without
breaking program order

Sequential Consistency

● 0, 0 not allowed in SC
● If 0,0 occurs -> one thread broke program order
● Acquire, Release, and Relaxed Semantics - allow more reorderings

A = 0, B = 0

T1 T2

A = 1 B = 1

Print B Print A

T1 T2

Print B B = 1

A = 1 Print A

Not allowed in
SC

