Atomicity, Locks,
Consistency & Project 1

August 22, CS 6530
Yuvaraj Chesetti

Multi-threaded programming

chesetti®sn4622111117:~$ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 _bits physical, 57 bits virtual
CPU(s): 128

On-line CPU(s) list: 0-127
Thread(s) per core: 2

Core(s) per socket: 32

Socket(s): 2

NUMA node(s): 2

Vendor ID: Genuinelntel
CPU family: 6

Model: 106

Model name: Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz
Stepping: 6

CPU MHz: 800.846

CPU max MHz: 3200 .0000

CPU min MHz: 800 . 0000
BogoMIPS: 4000 .00
Virtualization: VT-x

L1ld cache: 3 MiB

L1i cache: 2 MiB

LZ cache: 80 MiB

L3 cache: 96 MiB

Multithreaded programming can be
unintuitive!

Intuition 1 - Operations are atomic by default

void incX(int *x, int times) {
(int 1 =0; 1 < times; i++) {

}

X = x4 13

}

Single
Threaded

Multi
Threaded

X = 0;

incX(&x, 500000);

incX(&x, 500000);

std: :cout<< x <<std::endl;

X = 0;

std: :thread t1(incX, &x, 500000);
std: :thread t2(incX, &x, 500000);
tl.j01n(Q);

t2.j301inQ);

std: :cout<< x <<std::endl;

void incX(int *x, int times) {
(int 1 =0; 1 < times; i++) {

}

X = x4 13

}

Single
Threaded

Multi
Threaded

X = 0;

incX(&x, 500000);

incX(&x, 500000);

std: :cout<< x <<std::endl;

X = 0;

std: :thread t1(incX, &x, 500000);
std: :thread t2(incX, &x, 500000);
tl.j01n(Q);

t2.j301inQ);

std: :cout<< x <<std::endl;

— 1000000

Random
(~ 500000)

What's happening?

X =X + 1is not really 1 instruction

Ltd i, rl

add rl1l, rl, 1
st X, ri

Memory

X =207

R1

1l
o

CPU 1

R1

1l
o

CPU 2

CPU 1

CPU 2

Memory

X =207

R1 =207

CPU 1

R1

1l
o

CPU 2

CPU 1

Id x, r1

CPU 2

Memory

X =207

R1 =207

CPU 1

R1 =207

CPU 2

CPU 1

Id x, r1

CPU 2

Id x, r1

Memory

X =207

R1 =208

CPU 1

R1 =207

CPU 2

CPU 1

Id x, r1
addr1,r1, 1

CPU 2

Id x, r1

Memory

X =207

R1 =208

CPU 1

R1 =208

CPU 2

CPU 1

Id x, r1
addr1,r1, 1

CPU 2

Id x, r1
addr1,r1, 1

Memory

X =208

N

R1 =208

CPU 1

R1 =208

CPU 2

CPU 1

Id x, r1
addr1,r1, 1
st x,r1

CPU 2

Id x, r1
addr1,r1, 1
st x, r1

Memo
i CPU 1 CPU 2

X =208
Id x, r1 Id x, r1

/\ addr1,r1,1 addrl,r1, 1
st x,r1 st x, r1

R1 =208 R1 =208

CPU 1 CPU 2
What went wrong?

Memory

X =208

N

R1 =208

CPU 1

R1 =208

CPU 2

CPU 1 CPU 2

Id x, r1 Id x, r1
addr1,r1, 1 addr1,r1, 1

st x,r1 st x, r1

What went wrong?

We expect
X =X + 1 to be executed as
one step by one thread

Memory

X =208

N

R1 =208

CPU 1

R1 =208

CPU 2

CPU 1 CPU 2

Id x, r1 Id x, r1
addr1,r1, 1 addr1,r1, 1

st x,r1 st x, r1

What went wrong?

We expect
X =x + 1 to be Atomic!

Atomics in C

GNU builtin atomics

void _atomic_load (type *ptr, type *ret, int memorder)
void _atomic_store (type *ptr, type *val, int memorder)
type __atomic_add fetch (type *ptr, type val, int memorder)
type _ sync lock test and set (type *ptr, type value, ...)
Atomically set *ptr to value, return old value

void _ sync release (type *ptr)
Atomically set *ptr to @

FULL LIST AT: https://gcc.gnu.org/onlinedocs/qgcc/ 005f 005fatomic-Builtins.html

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html#index-_005f_005fatomic_005fload
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html

void incX(int *x, int times) {
(int 1 =0; 1 < times; i++) {

}

X = x4 13

}

Single
Threaded

Multi
Threaded

X = 0;

incX(&x, 500000);

incX(&x, 500000);

std: :cout<< x <<std::endl;

X = 0;

std: :thread t1(incX, &x, 500000);
std: :thread t2(incX, &x, 500000);
tl.j01n(Q);

t2.j301inQ);

std: :cout<< x <<std::endl;

void incX(int *x, int times) {
(int 1 = 0; 1 < times; 1++) {
__atomic_add_fetch(x, 1, __ATOMIC_SEQ_CST);

}

}

Single
Threaded

Multi
Threaded

X = 0;

incX(&x, 500000);

incX(&x, 500000);

std: :cout<< x <<std::endl;

X = 0;

std: :thread t1(incX, &x, 500000);
std: :thread t2(incX, &x, 500000);
tl.j01n(Q);

t2.j301inQ);

std: :cout<< x <<std::endl;

— 1000000

1000000

Level of Atomicity

e Are atomics enough?
e \What about objects or Read-Modify-Writes?

mutateObject(xobj, f1, f2) {
atomic_store(obj->field_1, f1)
atomic_store(obj->field_2, f2)

Level of Atomicity

e Are atomics enough?
e \What about objects or Read-Modify-Writes?

mutateObject(xobj, f1, f2) {
atomic_store(obj->field_1, f1)
atomic_store(obj->field_2, f2)
}

Thread 1 -> mutateObject(obj, x, x)
Thread 2 -> mutateObject(obj, vy, vy)

Level of Atomicity

e Are atomics enough?
e \What about objects or Read-Modify-Writes?

mutateObject(xobj, f1, f2) {
atomic_store(obj->field_1, f1)
atomic_store(obj->field_2, f2)
}

Thread 1 -> mutateObject(obj, x, x)
Thread 2 -> mutateObject(obj, vy, vy)

assert(obj->field_1 == obj->field_2)
Can this assertion fail?

Level of Atomicity

tl sets field_ 1 to
t2 sets field_1 to
t2 sets field_2 to
tl sets fti1eld_2 to

X< < |[X

Result:
{field_1 = vy, field_2 = x}

Individual operations are atomic,
but the entire function is not!

Problem: Function is not atomic

Critical Section - Locks

e Locks - barriers that prevent multiple threads entering critical section

mutateObject(xobj, f1, f2) {
acquire(obj->lock)
// Critical Section Start

Only 1 thread
should be in this
section

atomic_store(obj->field_1, f1)
atomic_store(obj->field_2, f2)

// Critical Section End
release(obj->1lock)

}

Database Row

h

Database Row

h

Acquire Lock?

Database Row

[

OKI

Database Row

&
Read/Write
Row

Database Row

3

Acquire lock?

Database Row

Hold on, not yet!
Someone is holding the lock

Acquire lock?

Database Row

3

I’'m done!
Release
lock

Database Row

The lock just got released!
I'll let one of you acquire the lock

Database Row

The lock just got released!
I'll let one of you acquire the lock

Prevents concurrent
modifications

ReaderWriter Lock

Q: If all the threads are only reading, is it ok to let them run concurrently?
YES!

e The ReaderWriter lock is an extension to a simple lock which
o Allows concurrent access to readers
o Exclusive access to writers

Database Row

h

Database Row

h

Acquire Read Lock?

Database Row

h

OKI

Database Row

h

Read
Row

Database Row

o

Acquire read lock?

Database Row

3

OKI

Database Row

3

Read

3

®6® OO

Database Row

Acquire Write
Lock?

Database Row

@) Hold on, not yet!
| As soon as the readers are done

®6® OO

Lock

Database Row

@) Hold on, not yet!
_ As soon as the readers are done

Acquire Write

I’'m done!
Release
read lock
Lock

Database Row

@) Hold on, not yet!
_ As soon as the readers are done

Acquire Write
Lock

Release read lock

Database Row

Hold on, not yet!
As soon as the readers are done

Acquire Write
Lock

Database Row

h

OKI

Database Row

&
ﬁ Hold on! Not yet..

Acquire write lock?

Acquire read lock?

Database Row

@ Hold on! Not yet..

Acquire write lock?

Acquire read lock?

Scheduling question: Who gets the lock now?

Database Row

@) Hold on, not yet!
" As soon as the readers are done

Acquire Write
Lock

OCNONOCIORONO

Scheduling question:
Should R to be give a reader lock?

Implementing Locks

Lock API

e Simple Lock
o Acquire
o Release

e ReadWrite Lock

AcquireReadLock
ReleaseReadlLock
AcquireWriteLock
ReleaseWriteLock

o O O O

Implementing Locks

type __sync_lock_test and set (type *ptr, type value, ...)
Atomically set *ptr to value, return old value
void _ sync_release (type *ptr)
Atomically set *ptr to ©
void acquire_lock(int *lock) {

while(__sync_test_and_set(&lock, 1));
}

void release_lock(int xlock) {
__sync_release(&lock);

}

Project 1
Implement Reader/Writer Locks!

Project 1
Demo

Readers vs Writers

Atomics and synchronization primitives are not cheap!

e Forreaders, synchronization is an overhead
o If there were only readers, you would not need synchronization

e For writers, synchronization is unavoidable
Lock implementation should aim to

e add minimal overhead to readers
e without giving up on correctness

Memory Consistency Model

void incX(int *x, int times) {
(int 1 = 0; 1 < times; 1++) {
__atomic_add_fetch(x, 1, __ATOMIC_SEQ_CST);
}

}

Intuition 2 - Operations are always performed
in order

More unintuitive behaviour

e Can the below code print (A=0,B=0) ?

A=0,B=0
T1 T2

A=1 B=1

Print B Print A

More unintuitive behaviour

e Can the below code print (A=0,B=0) ?

A=0,B=0
T To T1 T2
A= 1 B =1 - Print B B=1
Print B Print A A=1 Print A

CPU/Compiler thinks its
ok to reorder
independent
statements!

Memory Consistency Models

Memory Consistency Models - expectations on memory behaviour
Determines what reorderings are allowed
Stricter consistency models at cost of performance

Sequential Consistency
o Interleavings must follow a order that could have been done on a single thread without
breaking program order

void incX(int *x, int times) {
(int 1 = 0; 1 < times; i++) {
__atomic_add_fetch(x, 1, __ATOMIC_SEQ_CST);

}
}

Sequential Consistency

e 0, 0notallowedin SC
e If 0,0 occurs -> one thread broke program order
e Acquire, Release, and Relaxed Semantics - allow more reorderings

A=0,B=0
T1 T2 T T2
A= 1 B =1 - Print B B=1
Print B Print A A=1 Print A

Not allowed in
SC

