CS 6530: Advanced Database Systems Fall 2024

Lecture 20 Vector Databases

Prashant Pandey prashant.pandey@utah.edu

Vector databases

- Specialized databases designed to store, index, and retrieve highdimensional vectors efficiently
- Particularly useful for tasks like similarity search, recommendation systems, and AI model outputs

Metric-space vector databases

• These databases use distance metrics (e.g., Euclidean, cosine similarity) to organize and search vectors

• Examples:

- Milvus
- Weaviate
- Pinecone

Graph-based vector databases

- Utilize graph structures (e.g., k-NN graphs, HNSW) for efficient similarity search
- These are well-suited for large-scale datasets where approximate nearest neighbor (ANN) searches are common
- Examples:
 - ElasticSearch (with ANN plugins)
 - Vespa
 - HNSWlib-based databases

Hash-based vector databases

- Use hashing techniques like Locality-Sensitive Hashing (LSH) for fast approximate searches
- Suitable for sparse or low-dimensional datasets.
- Examples:
 - FAISS (Flat and Hash-based indexing options)
 - Annoy (Approximate Nearest Neighbors)

Hybrid vector databases

- Combine vector indexing with traditional relational or documentbased databases
- Ideal for applications needing structured data along with unstructured vector queries
- Examples:
 - Redis with vector similarity search
 - PostgreSQL with vector search extensions (e.g., pgvector)
 - MongoDB Atlas Search (supports vector fields)

Cloud-native vector databases

- Fully managed, scalable vector databases optimized for cloud platforms
- Simplify setup, scaling, and maintenance
- Examples:
 - Amazon Kendra
 - Google Vertex AI Matching Engine
 - Azure Cognitive Search

Specialized vector databases

- Tailored for specific use cases, such as video search, genomics, or geospatial data
- May incorporate domain-specific optimizations
- Examples:
 - Zilliz (Al and ML-focused)
 - Deep Lake (designed for AI datasets)

Vector embeddings

Vectors

- Commonly represent unstructured data
 - Audio, text, images, etc
- Usually of high-dimension in the form of a dense embedding.
- Packed with information
- Easy to use API to create

Vector Embedding Creation

- Simple creation APIs
- Example with HuggingFace Sentence Transformer

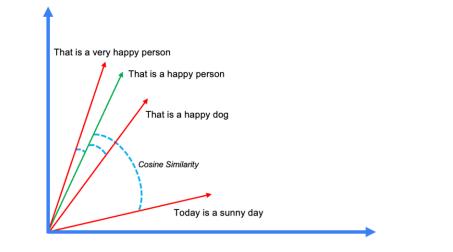
•••

```
1 from sentence_transformers import SentenceTransformer
2 model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
3
4 sentences = [
5 "That is a very happy Person",
6 "That is a Happy Dog",
7 "Today is a sunny day"
8 ]
9 embeddings = model.encode(sentences)
```


Vector Similarity Search

- 3 semantic vectors = Search Space
 - "today is a sunny day"
 - "that is a very happy person"
 - "that is a very happy dog"
- 1 Semantic vector = Query
 - "That is a happy person"

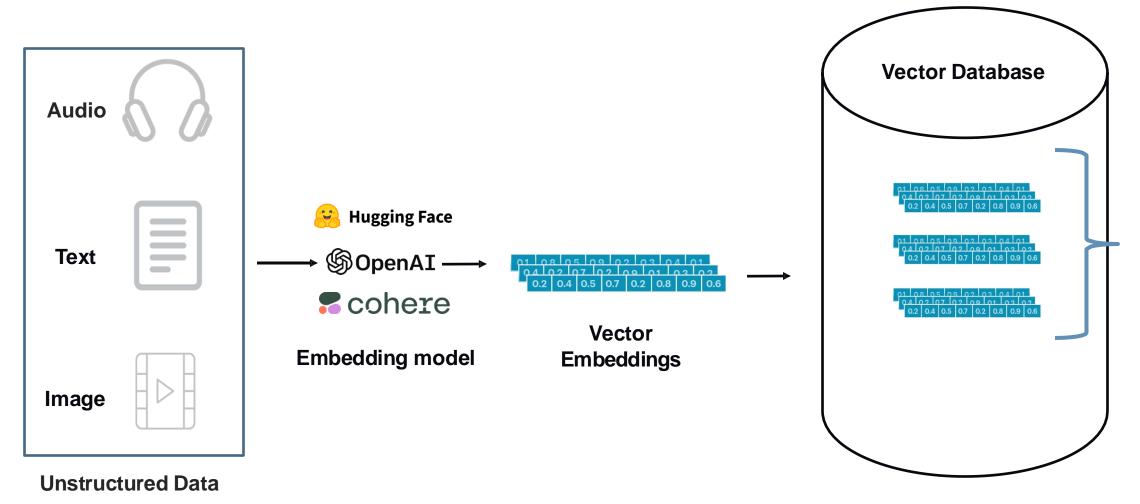
Goal: Find most similar vector to the query



How? Calculate the distance (ex. Cosine Similarity)

That is a happy dog	0.695
That is a very happy person	0.943
Today is a sunny day	0.257

Vector database



Nearest neighbor search

```
Recall: Given a set X \in \mathbb{R}^d of size n.
Goal: For query q \in \mathbb{R}^d, find nearest neighbor x^* = NN_X(q) = rgmin_{x \in X} \|x - q\|.
Two phases:
```

1. Build data structure (hopefully not too much larger than |X|) 2. Answer queries for $q \in \mathbb{R}^d$.

Nearest neighbor search

We introduce a new strategy today: Greedy Graph Search

1. Build a sparse graph G = (X, E) on X, with E(x) including at least is near neighbors

2. On query q, start with (*any*, *random*?) node $x \in X$, and see if any neighbors $x' \in E(x)$ are closer. If so, recurse on x'. (More robust (and useful) to maintain k closest point.)

Terminate when no improvement is possible.

If each point $x \in X$ has at most m neighbors, and each path is at most h hops, then this approach has

- O(nm) space
- O(mh) query time.

Nearest neighbor search

Hierarchical Navigable Small World Graphs (HNSW)

Includes Neighborhood graph, undirected Consider $L \leq \log n$ levels of edge length in graph Each $x \in X$, for each level $\ell \in L$, choose pprox closest point

Approximate by building points $x_1, x_2, ... \in X$, where $X_i = \{x_1, x_2, ..., x_i\}$ When building $E(x_i)$ find closest K among points in X_{i-1} Add reverse nearest neighbor edges (undirected) Make sure includes K' nearest neighbors.

Start search from one of first $x_1..., x_s$ for small s (with long edges).

RAG implementation

FAISS

Facebook AI Similarity Search

mostly for $x^* = rgmin_{x \in X} \|x-q\|$

Combination of 2 ideas

1. quantized index

2. GPU acceleration

Quantized index

database vector as $xpprox Q(x)=Q_1(x)+Q_2(x)+...+Q_m(x)$

- where $Q_j:\mathbb{R}^d o C_j$ so C_j is a *codebook* of size k (k points in \mathbb{R}^d) e.g., k centers of k-means clustering
- C_j has more detail than C_{j-1} $C_j \text{ has more ``weight" than } C_{j+1} \text{ measures larger distances}$
- *m* is small 2, 3, ... 6?

Roughly we want

- the same number of points $X_j \subset X$ which quantize to the $c_j \in C_1$
- the maximum distance $\max_{x \in X_j} ||c_j x||$ similar for each c_j . (Should be feasible if doubling dimension bounded, and measure fairly uniform)

Quantized index

Then quantize each X_j with next another k codewords with that set recursively down to $C_2, C_3, ... C_m$.

each distance stored with limited precision (over limited range) --> saves space

```
On search q \in \mathbb{R}^d:
```

- find $c^* = rgmin_{c \in C_1} \|q-c\|$
- recurse on X_{j*} and its quantization C_{j*}
- data adaptive, very-wide hierarchical index

More efficient and robust with maintaining top-K

GPU acceleration

GPU acceleration

The problem with very-wide architecture is that

... find
$$c^* = rgmin_{c \in C_1} \|q-c\|$$

requires a NN search!

GPUs are fast parallel processes can min of k operations at once solves N on size-k codebooks efficient

RAG and Pinecone

- Pinecone is a Billion-dollar company
- Based on graph-based similarity search
- Build to deliver RAG for companies

LLM + Vector DB Use Cases

Because large was not large enough

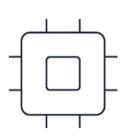
Vector database for LLMs

Context Retrieval

- Search for relevant sources of text from the "knowledge base"
- Provide as "context" to LLM

LLM "Memory"

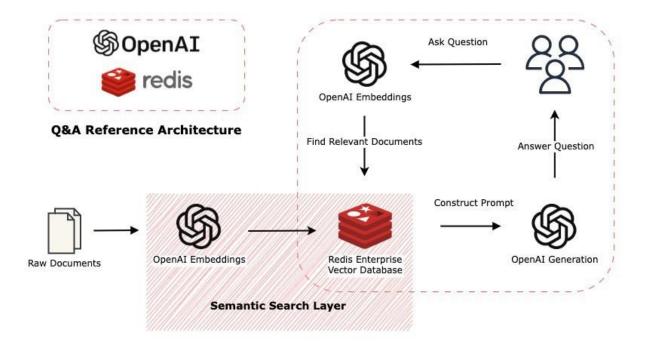
- Persist embedded conversation history
- Search for relevant conversation pieces as context for LLM



LLM Cache

- Search for semantically similar LLM prompts (inputs)
- Return cached responses

Context retrieval



Description

- Vector database is used as an external knowledge base for the large language model.
- Queries are used to detect similar information (context) within the knowledge base

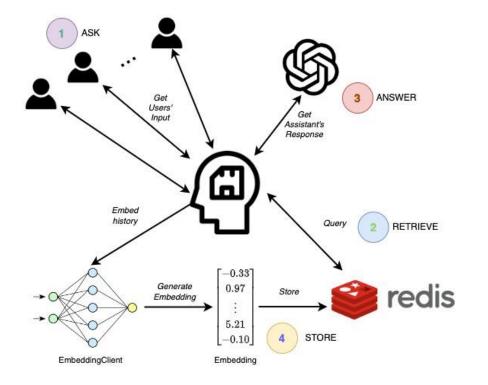
Benefits

- Cheaper and faster than fine-tuning
- Real-time updates to knowledge base
- Sensitive data doesn't need to be used in model training or fine tuning

Use Cases

- Document discovery and analysis
- Chatbots

Long term memory for LLMs



Description

- Theoretically infinite, contextual memory that encompasses multiple simultaneous sessions
- Retrieves only last K messages relevant to the current message in the entire history.

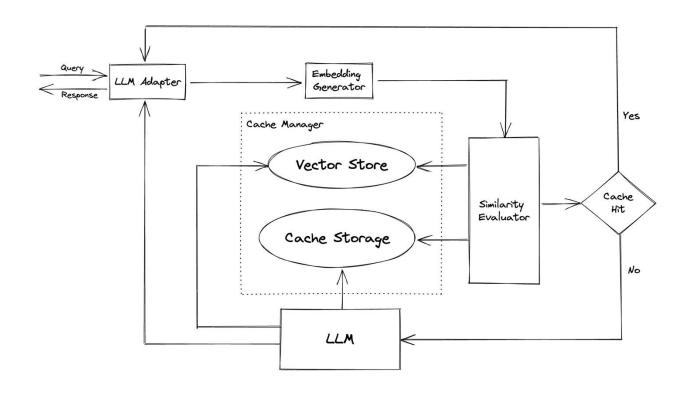
Benefits

- Provides solution to context length limitations of large language models
- Capable of **addressing topic changes** in conversation without context overflow

Use Cases

- Chatbots
- Information retrieval
- Continuous Knowledge Gathering

LLM query caching



• Description

- Vector database used to cache similar queries and answers
- Queries embedded and used as a cache lookup prior to LLM invocation

Benefits

- Saves on computational and monetary cost of calling LLM models.
- Can **speed up applications** (LLMs are slow)

Use Cases

• Every single use case we've talked about that uses an LLM.

Parting thoughts

- Vector databases are hot and underlie modern ML-based platforms
- There are still a bunch of open research questions regarding
 - Most efficient indexing technique for managing embeddings

