CS 6530: Advanced Database Systems Fall 2024

Lecture 20
Vector Databases

Prashant Pandey
prashant.pandey@utah.edu

OOOOOOOOOOOOOOOOO
% ;

http://prashant.pandey@utah.edu

Vector databases

» Specialized databases designed to store, index, and retrieve high-
dimensional vectors efficiently

 Particularly useful for tasks like similarity search, recommendation
systems, and Al model outputs

OOOOOOOOOOOOOOOOO

Metric-space vector databases

* These databases use distance metrics (e.g., Euclidean, cosine
similarity) to organize and search vectors

* Examples:
* Milvus
* Weaviate
* Pinecone

OOOOOOOOOOOOOOOOO
......

Graph-based vector databases

 Utilize graph structures (e.g., k-NN graphs, HNSW) for efficient
similarity search

* These are well-suited for large-scale datasets where approximate
nearest neighbor (ANN) searches are common

* Examples:
 ElasticSearch (with ANN plugins)
* Vespa
* HNSWIlib-based databases

OOOOOOOOOOOOOOOOO
......

Hash-based vector databases

e Use hashing techniques like Locality-Sensitive Hashing (LSH) for fast
approximate searches

 Suitable for sparse or low-dimensional datasets.

* Examples:

e FAISS (Flat and Hash-based indexing options)
* Annoy (Approximate Nearest Neighbors)

OOOOOOOOOOOOOOOOO
......

Hybrid vector databases

 Combine vector indexing with traditional relational or document-
based databases

* |deal for applications needing structured data along with
unstructured vector queries

* Examples:

* Redis with vector similarity search
* PostgreSQL with vector search extensions (e.g., pgvector)
 MongoDB Atlas Search (supports vector fields)

OOOOOOOOOOOOOOOOO
......

Cloud-native vector databases

* Fully managed, scalable vector databases optimized for cloud
platforms

* Simplify setup, scaling, and maintenance

* Examples:

* Amazon Kendra
* Google Vertex Al Matching Engine
* Azure Cognitive Search

OOOOOOOOOOOOOOOOO

Specialized vector databases

* Tailored for specific use cases, such as video search, genomics, or
geospatial data

* May incorporate domain-specific optimizations

* Examples:
 Zilliz (Al and ML-focused)
* Deep Lake (designed for Al datasets)

OOOOOOOOOOOOOOOOO

Vector embeddings

p
Vectors Vector Embedding Creation
» Commonly represent e Simple creation APIs

unstructured data e Example with HuggingFace Sentence

e Audio, text, images, etc Transformer

* Usually of high-dimension in the ,

form of a dense embedding. “i.modelSi“;::izazgiizz:xi;;(.senteiizfi:;izzz:;;:?;?:;l_mn.LLMALG_VZ.)
* Packed with information [

1
* Easy to use APl to create e i
N

U SRRy OF Acknowledgement: Slides taken from Sam Partee, Applied Al

UNIVERSITY OF UTAH

Vector Similarity Search

e 3 semantic vectors = Search Space Goal: Find most similar vector to the query

4
® “todayis a sunny day”

That is a very happy person

That is a happy person

® “thatis a very happy person”

That is a happy dog

® “thatis a very happy dog”

*\ Cosine Similarity
)
)
\
1
1

Today is a sunny day

e 1 Semantic vector = Query

>
® “Thatis a ha erson” . . T
PPY P How? Calculate the distance (ex. Cosine Similarity)
=——rm 0.695
That is a happy dog
T 0.943
That is a vexry happy person
753 0.257

Today is a sunny day

SCHOOL OF COMPUTING . .
u UNIVERSITY OF UTAR Acknowledgement: Slides taken from Sam Partee, Applied Al

Vector database

Vector Database
Audio
l'!l laslnalaolnalaalos]
L e
~ | Hugging Face
P et ey St
Text —— GOpenAl — IBRIERIRRME, CEEE
[0.2][0.4]05]07 [o2[08[09]06] FamIrr
® cohere i i Toa e as e
Vector —
Embedding model Embeddings
Image

Unstructured Data

HOOL OF COMPUTING . .
fﬁ,[\?&sﬂfg UTI;'\H Acknowledgement: Slides taken from Sam Partee, Applied Al

Nearest neighbor search

Recall: Given a set X € R? of size n.
Goal: For query ¢ € RY, find nearest neighbor z* = N Nx(q) = argmingcx ||z — q||.

Two phases:

1. Build data structure (hopefully not too much larger than |X|)
2. Answer queries for ¢ € R

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Nearest neighbor search

We introduce a new strategy today: Greedy Graph Search

1. Build a sparse graph G = (X, F) on X, with E(z) including at least is near neighbors
2. On query g, start with (any, random?) node & € X, and see if any neighbors x e E(m) are closer. If so, recurse on .
(More robust (and useful) to maintain k closest point.)

Terminate when no improvement is possible.

If each point z € X has at most m neighbors,
and each path is at most h hops,
then this approach has

e O(nm) space

e O(mh) query time.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Nearest neighbor search

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Hierarchical Navigable Small World Graphs (HNSW)

Includes Neighborhood graph, undirected
Consider L < log n levels of edge length in graph

Each z € X, for each level £ € L, choose ~ closest point

Approximate by building points x1, Z, ... € X, where X; = {1, s, ..., x;}
When building E(x;) find closest K among points in X;_{
Add reverse nearest neighbor edges (undirected)

Make sure includes K’ nearest neighbors.

Start search from one of first ..., s for small s (with long edges).

RAG implementation

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

FAISS

Facebook Al Similarity Search
mostly for * = arg min,.x || — ¢
Combination of 2 ideas

1. quantized index
2. GPU acceleration

Quantized index

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

database vectoras x ~ Q(z) = Q1(x) + Q2(x) + ... + Qum(z)

» where Q; : R? — C;
so C} is a codebook of size k (k points in R4
e.g., k centers of k-means clustering
e C; has more detail than C;_;
Cj has more " “weight" than Oj+1 - measures larger distances

e missmall 2, 3,...6?7
Roughly we want

e the same number of points Xj C X which quantize to the c; € C
* the maximum distance maX;c x, ch — .:CH similar for each c¢;.

(Should be feasible if doubling dimension bounded, and measure fairly uniform)

Quantized index

Then quantize each X ; with next another k£ codewords with that set
recursively down to Csy, Cj3, ...Cy,.

each distance stored with limited precision (over limited range) --> saves space

On search ¢ € R%:

e find ¢* = arg min.c¢, ||q — ||
® recurse on Xj* and its quantization Cj*

e data adaptive, very-wide hierarchical index

More efficient and robust with maintaining top- K

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

GPU acceleration

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

GPU acceleration

The problem with very-wide architecture is that
.. find ¢* = arg min..¢, ||q — ¢|

requires a NN search!

GPUs are fast parallel processes
can min of k operations at once

solves IN on size-k codebooks efficient

RAG and Pinecone

* Pinecone is a Billion-dollar company
e Based on graph-based similarity search
* Build to deliver RAG for companies

OOOOOOOOOOOOOOOOO

LLM + Vector DB Use Cases

Because large was not large enough

OOOOOOOOOOOOOOOOO
1 SITY

Vector database for LLMs

=3
Context Retrieval

e Search for relevant
sources of text from the

“knowledge base”

e Provide as “context’ to

LLM

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

LLM “Memory”

e Persist embedded

conversation history

e Search for relevant
conversation pieces as

context for LLM

Acknowledgement: Slides taken from Sam Partee, Applied Al

LLM Cache

Search for semantically
similar LLM prompts

(inputs)

Return cached responses

Context retrieval

® Description

® Vector database is used as an external

Ask Question
@ B % knowledge base for the large language model.
| o

L Queries are used to detect similar information

GRRIALEmCadbs (context) within the knowledge base

Q&A Reference Architecture

Find Relevant Documents

{ Construct Prompt
N - {
—_—
. —_— —_—

REW DoOCPEntS OpenAl Embeddings Redis Enterprise OpenAl Generation model training or fine tuning
Vector Database

® Benefits

Answer Question

® Cheaper and faster than fine-tuning

® Real-time updates to knowledge base

® Sensitive data doesn’t need to be used in

Semantic Search Layer ® Use Cases

® Document discovery and analysis

® Chatbots

SCHOOL OF COMPUTING . :
U UNIVERSITY OF UTAH Acknowledgement: Slides taken from Sam Partee, Applied Al

Long term memory for LLMs

Users' Got S

Input e B
P Assistant’s
Response

Get (3)answer

Embed =
hstory Query | RETRIEVE
0.33
Generate 0.97 Store .
eosiny | ™ redis
5.21
0.10 4 STORE
EmbeddingClient Embedding

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Acknowledgement: Slides taken from Sam Partee, Applied Al

® Description

® Theoretically infinite, contextual memory that

encompasses multiple simultaneous sessions

Retrieves only last K messages relevant to the
current message in the entire history.

® Benefits

® Provides solution to context length

limitations of large language models

Capable of addressing topic changes in

conversation without context overflow

® Use Cases

® Chatbots

® Information retrieval

® Continuous Knowledge Gathering

LLM query caching

Query =
S

QSPOV\SC

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Embeouimj

Generator
: Yes
E ¢
Simil aﬁ‘ty ‘:‘:tke
; Evaluator

N\]
Cache Storage -

LT -

Acknowledgement: Slides taken from Sam Partee, Applied Al

® Description

® Vector database used to cache similar

queries and answers

Queries embedded and used as a cache
lookup prior to LLM invocation

® Benefits

® Saves oncomputational and monetary cost

of calling LLM models.
® Can speed up applications (LLMs are slow)
® Use Cases

® Every single use case we’ve talked about that

uses an LLM.

Parting thoughts

* VVector databases are hot and underlie modern ML-based platforms

* There are still a bunch of open research questions regarding
* Most efficient indexing technique for managing embeddings

OOOOOOOOOOOOOOOOO

	Slide 1: Lecture 20 Vector Databases
	Slide 2: Vector databases
	Slide 3: Metric-space vector databases
	Slide 4: Graph-based vector databases
	Slide 5: Hash-based vector databases
	Slide 6: Hybrid vector databases
	Slide 7: Cloud-native vector databases
	Slide 8: Specialized vector databases
	Slide 9: Vector embeddings
	Slide 10: Vector Similarity Search
	Slide 11: Vector database
	Slide 12: Nearest neighbor search
	Slide 13: Nearest neighbor search
	Slide 14: Nearest neighbor search
	Slide 15: RAG implementation
	Slide 16: Quantized index
	Slide 17: Quantized index
	Slide 18: GPU acceleration
	Slide 19: RAG and Pinecone
	Slide 20
	Slide 21: Vector database for LLMs
	Slide 22: Context retrieval
	Slide 23: Long term memory for LLMs
	Slide 24: LLM query caching
	Slide 25: Parting thoughts

