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GPU stuff!
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Moore’s law

Often expressed as:
“X doubles every 18-24 months”
where X is:

“performance”
CPU clock speed
the number of transistors per chip

which one is it?

OOOOOOOOOOOOOOOOO
------

based on William Gropp’s slides



Moore's Law is Alive and Well!
Transistors per Square Millimeter by Year b u t
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40 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp
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Can (a single) CPU cope with increasing application complexity?

No, because CPUs (cores) are not getting faster!!!

.. but they are getting more and more (parallel)

Research Challenges

how to handle them?
how to parallel program?

OOOOOOOOOOOOOOOOO
......



CPU vs. GPU

ALU | ALU

Contral

ALU | ALU

CPU

CPU: A few powerful cores with large caches. Optimized for sequential computation
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CPU vs. GPU

ALU ALU EI
Control =

ALU | ALU =

CPU GPU

CPU: A few powerful cores with large caches. Optimized for sequential computation

GPU: Many small cores. Optimized for parallel computation
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CPU vs. GPU — Processing Units

1950 2000 2010

40 Years of Microprocessor Trend Data

Intel Skylake 128 GFLOPS/4 Cores 100+ Watts
NVIDIA V100 15 TFLOPS 200+ Watts
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~1 GFLOPS/Watt
~75 GFLOPS/Watt
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CPU vs. GPU — Memory Bandwidth

—®— Nvidia GPU
—&— |ntel CPU

1200 GBps

Peak Bandwidth (GB/s)
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GPU has one order of magnitude higher memory bandwidth than CPU
Memory Bandwidth is the bottleneck for in-memory analytics
wonwowme A NAtural idea: use GPUs for data analytics



GPU-DB Limitations

Limitation 1: Low interconnect bandwidth
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GPU-DB Limitations

Limitation 1: Low interconnect bandwidth

Limitation 2: Small GPU memory capacity
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GPU-DB Limitations

Limitation 1: Low interconnect bandwidth
Limitation 2: Small GPU memory capacity
Limitation 3: Coarse-grained cooperation of CPU and GPU

—~ CPU - S GPUE
N oy
Main Device

Memory Memory

® ®

100GB—1TB capacity 8—80GB
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GPU Database Operation Mode

Coprocessor mode: Every query loads data from CPU memory to GPU

GPU-only mode: Store working set in GPU memory and run the entire
query on GPU

OOOOOOOOOOOOOOOOO
1IVE ;
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CPU-only vs. Coprocessor

MonetDB
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Key observation: With efficient implementations that can saturate memory bandwidth

GPU-only > CPU-only > coprocessor I
U s conmume



Star-Schema Benchmark

Platform CPU GPU
Model Intel i17-6900 Nvidia V100
Cores 8 (16 with SMT) | 5000
Memory Capacity | 64 GB 32GB
L1 Size 32KB/Core 16KB/SM
L2 Size 256KB/Core 6MB (Total)
L3 Size 20MB (Total) -
Read Bandwidth | 53GBps 880GBps Crystal-based implementations always
Write Bandwidth | 55GBps 880GBps .
B Twidth - 0.7 TBps saturate GPU memory bandwidth
L2 Bandwidth - 2.2TBps
L3 Bandwidth 157GBps - GPU is on average 25X faster than CPU
10°
Hyper (CPU)
BN Standalene (CPU)

- BN Omnisci (GPU)

E 10* { W Standalone (GPU)

£ 10

=

10°
ql.l gl.2 gl3 q2.1 g2.2 g2.3 g3.1 q3.2 q3.3 q3.4 qé.1 q4.2 q4.3 mean
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Emerging Fast Interconnect

~ CPU - = GPU E
Main Device

Memory Memory

100GB/s 10GB/s 1000GB/s

— CPU - = GPU E
i :
Main Device

Merpory Mermory

100GB/s 75GB/s 1000GB/s

Fast Interconnect can solve the PCle bottleneck

Emerging alternative interconnect technologies:
* NVLink
* Infinity Fabric

OOOOOOOOOOOOOOOOO
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ompute Express Link (CXL)
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NVLink Bandwidth and Latency

B NVLink20 M PCle30 M url M X-Bus

211

NVLink has much higher bandwidth % Sequential - Random " Latency
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(a) NVLink 2.0 vs. CPU & GPU Interconnects.
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NVLink Bandwidth and Latency

NVLink has much higher bandwidth
than PCle

NVLink has comparable bandwidth as
CPU local memory
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B NVLink20 [ Xeon B POWERY
Random

Sequential

117

)

Bandwidth (GiB/s
S = b W

0

3.6

b =

% 500
£ 4001
& 3001
£ 2001
S 100

Latency
434

IUOD
o~

0

(b) NVLink 2.0 vs. CPU memory.
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NVLink Bandwidth and Latency

NVLink has much higher bandwidth

than PCle

NVLink has comparable bandwidth as
CPU local memory

NVLink bandwidth has much lower
bandwidth than GPU memory
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(c) NVLink 2.0 vs. GPU memory.
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GPU Transfer Methods

Table 1: An overview of GPU transfer methods.

Method Semantics | Level | Granularity | Memory
Pageable Copy

Staged Copy Pageable
Dynamic Pinning | Push SW Chunk

Pinned Copy Pinned
UM Prefetch Unified
UM Migration OsS Page Unified
Zero-Copy Pull Pinned
Coherence HW | Byte Pageable

0 Pageable M Pinned M Unified
— PCle30 -- NVLink2.0

PCI-e 3.0 NVLink 2.0

1

| .

Pageable Copy 0.?5 . 0.67 |
_ |

Staged Copy 10.73 2.15

i
i
Dynamic Pinning 0.?26 ; 236 |
Coherence  Unsupported | 3.83
-
|
|
|

Pinned Copy 10.74 3.42
Zero Copy JllR 0.77 3,81

Unified Migration {§ 0.25 }0.16 |
Unified Prefetch {).54 I 047 I
0o 1 2 3 4 0 1 2 3 4
Throughput (G Tuples/s)

Figure 12: No-partitioning hash join using different
transfer methods for PCI-e 3.0 and NVLink 2.0.

Pinned copy and zero copy can saturate PCle bandwidth

Coherence can saturate NVLink bandwidth
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Non-Partitioned Hash Join Methods

Build phase: build the hash table using inner relation R

Probe phase: lookup hash table for each record in outer relation S

OOOOOOOOOOOOOOOOO
------
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Hash Join — Build Phase

Build phase: build the hash table using inner relation R

a CPU |« GPU |:
CPU (<! GPU H NVLink 2.0

Gy —— »[hash(key)| [z
#
nets I
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+
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st b

virtual memory mapping

(a) Data and hash table in (b)Datain CPU memory and
CPU memory. hash table spills from GPU
memory into CPU memory.
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Hash Join — Probe Phase

Probe phase: lookup hash table for each record in outer relation S

s T Y A

fe .t
224 CPU |« GPU CPU |l GPU |:
L NVLink 2.0 ' L INVLink 2.0
hash(key)|[#] | Tmmmesemmeeeeeee--plhash( key) ﬁ
O—f—] O—

(a) Data and hash table in (b)Datain CPU memory and
GPU memory. hash table in GPU memory.

OOOOOOOOOOOOOOOOO
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Hash Join

CPU (<l GPU |:|
. NVLink 2.0
hash(key)f---------»{hash(key)

Rad mid mad aid

|+ #

(a) Cooperatively process

join on CPU and GPU with
hash table in CPU memory.

CPU (<l GPU |:

NVLink 2.0

'

hash(key) hash(key)

o

... (Dmemcopy @

(b) Build hash table on
GPU, copy the hash table to
processor-local memories,

and then cooperatively
probe on CPU and GPU.

This hybrid design subsumes the previous designs in the paper
* Dynamically schedule tasks to both CPU and GPU

OOOOOOOOOOOOOOOOO
IVERSITY
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Hash Table Locality

Hash Table Location: M Gpu B cpu M rcPU M rGPU
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Figure 14: Join performance of the GPU when the hash
table is located on different processors, increasing the
number of interconnect hops from 0 to 3.

Best performance achieved when the hash table is in GPU memory
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Scaling Data Size in TPC-H Q6

@ CPU +# PCIl-e3.0 4 NVLink 2.0
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Figure 15: Scaling the data size of TPC-H query 6.

TPC-H Q6 contains a simple scan + aggregation with no join
Running the query on CPU leads to the highest performance
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Scaling the Probe Side Relation

® CPU(PRA) +# PCl-e3.0  NVLink2.0
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Figure 16: Scaling the probe-side relation.

NVLink is faster than both PCle and CPU only
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Scaling the Build Side Relation

® CPU(PRA) 4 PCl-e30 ® NVLink20 -+ NVLink 2.0 Hybrid HT
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Figure 17: Scaling the build-side relation.

Performance drops when the hash table does not fit in GPU memory
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Discussion

Query Type SPJA analytical queries Non-partitioned hash join
Execution Model Data fits in GPU memory Coprocessor
Interconnect PCle 3.0 NVLink 2.0

Research question: How to maximize GPU database performance
with different interconnect technology?

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH
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WHAT [ SAY WHAT I THINK

SO ANY PLEASE DON'T ASK

QUESTIONS? ANY QUESTIONS!
PLEASE LET THIS BE OVER.

workchronicles.com

follow on Instagram / Twitter / Facebook
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Compute, Memory, and Storage Hierarchy

Traditional von-Neuman computer architecture {
CPU

(i) assumes CPU is fast enough (for our applications)
not always!

(i) assumes memory can keep-up with CPU and can hold all data
Memory

is this the case?

for (ii): is memory faster than CPU (to deliver data in time)?

B— does it have enough capacity?



Which one is faster?

Memory Wall /

Performance

Old times! * Time

As the gap grows, we need a deep memory hierarchy
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A single level of main memory is not enough

We need a memory hierarchy

OOOOOOOOOOOOOOOOO
......



What is the memory hierarchy ?

OOOOOOOOOOOOOOOOO
------



/

L1 <1ns \

/

L2 ~3ns \

Bigger Faster
Cheaper \ Smaller
Slower . ~10ns More
expensive
/ Main Memory ~100ns \
/ SSD (Flash) ~100us \
/ HDD / Shingled HDD ~2ms \



Cache Hierarchy

What is a core?

What is a socket?

<10 cycles

I

A\

50 cycles

r?mc_l‘“"ﬂ

[ cor

Core Core Core Core Core

\\\ A /

L1

I ! I I
|L1||L}IIL1| L Jlw Jlu Ju ]

L2

L2 L2 L2 L2 L2 L2 L2
- - | -
L3 -
Memory controller —.!!

Inter-socket links

Inter-socket links
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Storage Hierarchy

/ Main Memory \

/ Shingled Disks \

OOOOOOOOOOOOOOOOO /
UNIVERSITY OF UTAH




Hard Disk

Drives

Secondary durable storage that support both random and sequential access

Data organized on pages/blocks (across tracks)
Multiple tracks create an (imaginary) cylinder
Disk access time:
seek latency + rotational delay + transfer time
(0.5-2ms) + (0.5-3ms) + <0.1ms/4KB

Sequential >> random access (~10x)

Goal: avoid random access
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Seek time + Rotational delay + Transfer time

Seek Profile of a Modern Disk Drive

Seek time: the head goes to the right track

Short seeks are dominated by “settle” time
(D is on the order of hundreds or more)

Seek time [ms]

oL
Rotational delay: The platter rotates to the right sector. °  Seekdistance "%

What is the min/max/avg rotational delay for 10000RPM disk?

min: 0, max: 60s/10000=6ms, avg: 3ms

Transfer time: <0.1ms / page > more than 100MB/s ﬂ
Head Here =~
N\

Block I Want

OOOOOOOOOOOOOOOOO
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Sequential vs. Random Access

Bandwidth for Sequential Access (assuming 0.1ms/4KB):
0.04ms for 4KB - 100MB/s

Bandwidth for Random Access (4KB):

0.5ms (seek time) + 3ms (rotational delay) + 0.04ms = 3.54ms

4KB/3.54ms = 1.16MB/s

OOOOOOOOOOOOOOOOO
......



Flash

Secondary durable storage that support both random and sequential access
Data organized on pages (similar to disks) which are further grouped to erase blocks
Main advantage over disks: random read is now much more efficient
BUT: Not as fast random writes! e

Goal: avoid random writes

A\
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The internals of flash

Flash Package
DiE‘S } . o o o
Planes ——tt>) E = = = interconnected flash chips
Blocks E ? I ? ?
Pages — — — — no mechanical limitations
SSD N
maintain the block API
Internal Flash m Flash com patlble W|th diSkS |ay0ut
Memory - = =

I Flash 1
Controller |

y internal parallelism

= Lﬂ__u L_HHL—'U Lj,/__u for both read/write

Interface (SATA / PCI) complex software driver
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Flash access time

... depends on:

device organization (internal parallelism)
software efficiency (driver)
bandwidth of flash packages

the Flash Translation Layer (FTL), a complex device driver (firmware) which
tunes performance and device lifetime

OOOOOOOOOOOOOOOOO
......



Performance (kIOPS)

Flash vs HDD

igh Performance
1sive Memory

1000 3
. ®E-SSD @ (C-SSD
i + E-HDD X C-HDD
100 -
10 -
- Low Performance
1 i Cheap Memory
i .|.+ Ve
0.1 : . . —X .
0.03125 0.125 0.5 2 8 32
Capacity (GB/S)
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HDD

v Large - cheap capacity

X Inefficient random reads

Flash

X Small - expensive capacity
v Very efficient random reads

X Read/Write Asymmetry



Technology Trends & Research Challenges

(1) From fast single cores to increased parallelism
(2) From slow storage to efficient random reads
(3) From infinite endurance to limited endurance

(4) From symmetric to asymmetric read/write performance

OOOOOOOOOOOOOOOOO
......



Technology Trends & Research Challenges

How to exploit increasing parallelism (in compute and storage)?

How to redesign systems for efficient random reads?
e.g., no need to aggressively minimize index height!

How to reduce write amplification (physical writes per logical write)?

How to write algorithms for asymmetric storage?

OOOOOOOOOOOOOOOOO
......
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